Question

In: Statistics and Probability

A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons'...

A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons' heights to obtain the data shown in the table below. Test the claim that sons are taller than their fathers at the

α=0.10

level of significance. The normal probability plot and boxplot indicate that the differences are approximately normally distributed with no outliers so the use of a paired​ t-test is reasonable.

Observation

1

2

3

4

5

6

Height of father​ (in inches)

67.7

73.7

67.1

67.3

69.5

73.5

Height of son​ (in inches)

69.9

75.0

71.0

71.6

71.1

72.3

What are the hypotheses for the​ t-test? Note that population 1 is fathers and population 2 is sons.

Find the test statistic.

Find the critical​ value(s).

What is the correct conclusion for the hypothesis​ test?

Solutions

Expert Solution

If you are satisfied with my answer then please give me a thumbs-up.

It will be very useful and helpful for me if you leave a like.

Thank you.


Related Solutions

A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons'...
A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons' heights to obtain the data shown in the table below. Test the claim that sons are taller than their fathers at the alpha equals 0.10α=0.10 level of significance. The normal probability plot and boxplot indicate that the differences are approximately normally distributed with no outliers so the use of a paired​ t-test is reasonable 67.5 72.9 68.4 71.2 67.7 66.8 71.1 71.3 67.6 74.7...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6 fathers who have adult male children. She records the height of both the father and son in inches and obtains the accompanying data. Are sons taller than their​ fathers? Use the alpha equals 0.1 level of significance. Note that a normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Observation 1 2 3 4...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6 fathers who have adult male children. She records the height of both the father and son in inches and obtains the accompanying data. Are sons taller than their​ fathers? Use the alpha equals 0.1 level of significance. Note that a normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Observation 1 2 3 4...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6 fathers who have adult male children. She records the height of both the father and son in inches and obtains the accompanying data. Are sons taller than their​ fathers? Use the α=0.1 level of significance. Note that a normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Observation 1 2 3 4 5 6...
To test the belief that sons are taller than their fathers, a student randomly selects 13...
To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers Height of Father,71.9,71.8,68.5,73.2,70.9,69.8,69.3,72.3,71.9,70.2,69.8,69.8,69.1 Xi Height of Son, Yi 76.8, 75.2, 71.0, 75.0, 72.0, 70.3, 69.4, 71.7, 70.6, 68.4, 67.3, 66.3,...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their​ fathers? Use the alphaαequals=0.10 level of significance.​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. LOADING... Click the icon to view the table...
To test the belief that sons are taller than their fathers, a student randomly selects 13...
To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the heights of both father and son in inches and obtains the following data. A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Test the claim at the α = 0.05 level of significance. Need to explain and show all work. fathers height: 70.3 67.1...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their​ fathers? Use the alpha=0.025 level of significance.​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Height of Father   Height of Son 71.4 76.3...
An anthropologist records the heights (in inches) of ten fathers and their sons. Use the Spearman...
An anthropologist records the heights (in inches) of ten fathers and their sons. Use the Spearman rank correlation test to analyze the results. Heights Son's Height Father's Height 64 64 57 66 52 79 50 78 41 77 40 90 66 81 78 80 58 61 56 82 Step 1 of 2: Find the value of the correlation coefficient to test for an association between the heights of the fathers and the heights of their sons. Round your answer to...
In a large population, 3% have had a heart attack. Suppose a medical researcher randomly selects...
In a large population, 3% have had a heart attack. Suppose a medical researcher randomly selects two people. Let X represent the event the first person has had a heart attack. Let Y represent the event the second person has had a heart attack. Which of the following is true about the two events? X and Y are disjoint. X and Y are independent. None of the above are true. Both (A) and (B) are true. plese show expakin how...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT