Question

In: Mechanical Engineering

The velocity of steam leaving the nozzle of a single-stage impulse turbine is 813 m/sec. The...

The velocity of steam leaving the nozzle of a single-stage impulse turbine is 813 m/sec. The nozzle angle is 20° and the blade speed corresponds to maximum blade efficiency. The moving blade is symmetric, assumed to be frictionless, and there is neither expansion nor contraction of the steam flow through the blade passage. Draw the velocity diagram and determine the relative velocity of steam leaving the blade.

Solutions

Expert Solution


Related Solutions

Steam enters the nozzle of an impulse turbine stage at 60 bar and 500 °C and...
Steam enters the nozzle of an impulse turbine stage at 60 bar and 500 °C and leaves at 20 bar. Flow is adiabatic and reversible. The nozzle angle is 20°. The moving blade is symmetric, travels at optimum velocity, and assumed to be frictionless. It is also assumed that there is neither expansion nor contraction of the steam flow through the blade passage. Draw the velocity diagram and calculate (a) the blade efficiency and (b) the stage efficiency.
The velocity of steam at inlet to a simple impulse turbine is 1200 m/s and the...
The velocity of steam at inlet to a simple impulse turbine is 1200 m/s and the nozzle angle is 21°. The blade speed is 500 m/s and the blades are symmetrical. Evaluate: The blade angles if the steam is to enter the blades without shock. If the friction effects on the blade are negligible, specify the tangential force on the blades and the diagram power for a mass flow of 0.85 kg/s. What are the axial thrust and the diagram...
Steam issues from the nozzle of a De-level turbine at a velocity of 1000 m/s at...
Steam issues from the nozzle of a De-level turbine at a velocity of 1000 m/s at an angle of 20ᵒ. The blade velocity is 300 m/s and blades are symmetrical. The mass flow rate is 0.5 kg/s and a friction factor is 0.8. With the help of velocity diagram, determine 1) Blade efficiency 2) Power developed 3) Stage efficiency if the nozzle efficiency is 95%
In a single stage impulse turbine, the nozzles discharge the fluid on to the blades at...
In a single stage impulse turbine, the nozzles discharge the fluid on to the blades at an angle of 25 o to the plane of rotation, and the fluid leaves the blades with an absolute velocity of 300 m/s at an angle of 120 o to the direction of motion of the blades. If the blades have equal inlet and outlet angles and there is no axial thrust, estimate the blade angle, power produced per kg/s of fluid, and diagram...
A single stage steam turbine is supplied with steam at 5 bars, 200 C at the...
A single stage steam turbine is supplied with steam at 5 bars, 200 C at the rate of 50kgmin. It exhausts into a condenser at a pressure of 0.2 bars. The blade speed is 400msec. Nozzles are inclined at an angle of 20 to the plane of the wheel and outlet blade angle 30. Neglecting friction losses, the power developed by the turbine will be?
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam...
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam are at 4000 kPA and 500°C. The diameter of the inlet pipe is 50 mm. The outlet conditions of the steam are 80 kPa and a quality of 1.0. The diameter of the outlet pipe is 250 mm. Determine the turbine power output in kJ/s assuming the kinetic energy change and potential energy change are both negligible. Calculate the change in kinetic energy to...
Steam at 50 Bar and 500oC is expanded isentropically through a single stage turbine to a...
Steam at 50 Bar and 500oC is expanded isentropically through a single stage turbine to a condenser operating at 1 bar. Assuming the steam at turbine exit is Dry Saturated Steam and the turbine is required to produce a power output of 5.33MW. Calculate the required steam mass flow rate in kg/s to 2 decimal places.
1.Steam is accelerated by a nozzle steadily from a low velocity to a velocity of 210...
1.Steam is accelerated by a nozzle steadily from a low velocity to a velocity of 210 m/s at a rate of 3.2 kg/s. If the temperature and pressure of the steam at the nozzle exit are 400 °C and 2 MPa, the exit area of the nozzle is: Select one: a. 8.4  cm2 b. 10.2 cm2 c. 23.0 cm2 d. 152 cm2 e. 24.0 cm2 2.An adiabatic heat exchanger is used to heat cold water at 15 °C entering at a...
A multi-stage gas turbine is to be designed with impulse stages, and is to operate with...
A multi-stage gas turbine is to be designed with impulse stages, and is to operate with an inlet pressure and temperature of 6 bar and 900 K, and an outlet pressure of 1 bar. The isentropic efficiency of the turbine is likely to be 85 per cent. All the stages are to have a nozzle outlet angle of 15 degrees, equal inlet and outlet blade angles, a mean blade speed of 250 m/s and equal 5 kJ/kg K o inlet...
Steam is supplied to a turbine at 50Bar, 400oC. It expands in the first stage until...
Steam is supplied to a turbine at 50Bar, 400oC. It expands in the first stage until it is dry saturated and then reheated to 400oC before expanding in the second stage to a condenser pressure of 0.05 Bar. Calculate the work output, Specific Steam Consumption (SSC) and the Rankine efficiency Compare these values with those obtained by a single stage expansion without reheat. Note - Neglect feed pump work
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT