Question

In: Physics

two skaters collide and embrace, in a completely inelastic collision. boomer, whose mass is 83 kg,...

two skaters collide and embrace, in a completely inelastic collision. boomer, whose mass is 83 kg, is originally moving east with v=6.2km/hr. sooner whose. mass is 55kg, is originally moving north with v=7.8km/hr. (a) what is the velocity of the couple after impact? (b) what is the velocity of the center of mass of two skaters before and aafter collision? (c) what is the fractional change in the Kinect energy of the skaters because of the collision?

Solutions

Expert Solution

In a completely inelastic collision all you need to consider is the conservation of momentum.

Eastward momentum (before collision):
Skater (1) 83 kg* 6.2 km/hr = 514.6kg km/hr
Skater (2) 55 kg* 0.0 km/hr = 0 kg km/hr
Total: 514.6

Eastward momentum (after collision):
Skater Pair: [514.6 kg km/hr] / [83 kg + 55 kg] = 3.72 km/hr north

Nortward momentum (before collision):
Skater (1) 83 kg* 0 km/hr = 0 kg km/hr
Skater (2) 55 kg* 7.8 km/hr = 429 kg km/hr

Northward momentum (after collision):
Skater Pair: [429 kg km/hr] / [83 kg + 55 kg] = 3.1087 km/hr east

Because north and east are at right angles to each other we can use the Pythagorean Theorem to solve for total velocity.

(3.1087)^2 + (3.72)^2 = 23.67
Square root of 24.023.67 is 4.2 So the velocity after impact is 4.2 km/hr

To find the direction we use the tangent.

Tan A = (east/north)
Tan A = (3.1087/3.72)
Tan A = (.82898)
A = 39.65degrees

I this system north is 0 deg, and east is 90.

So the final answer is that the pair move off at 4.2 km/hr at a heading of 39.65 degre
es.


Related Solutions

Two asteroids collide in space. The collision is not completely inelastic--the asteroids pull apart and continue...
Two asteroids collide in space. The collision is not completely inelastic--the asteroids pull apart and continue on their way. Their masses are 8.7 X 108 kg for Asteroid A and 3.4 X 108 kg for Asteroid B. Treat Asteroid A as being initially at rest. Asteroid B, moving at high speed, strikes Asteroid A and moves from the collision at a speed of 7300 m/s in a direction 48 degrees from its original path. Meanwhile, Asteroid A moves away from...
Two balls of clay collide in a perfectly inelastic, head-on collision. Suppose m1 = 0.5 kg,...
Two balls of clay collide in a perfectly inelastic, head-on collision. Suppose m1 = 0.5 kg, m2 = 0.25 kg, v1o = +4 m/s, and v2o = -3 m/s. (a) Find the velocity of the combined clay ball after the collision. (b) Find the kinetic energy lost during the collision.
Two particles with the same mass of 11 kg are involved in a completely inelastic head-on...
Two particles with the same mass of 11 kg are involved in a completely inelastic head-on collision. Before the collision both particles have the same speed of 3 m/s. Which statement below describes the velocities of the particles after the collision?  One of the particles continues at 3 m/s, and the other reverses direction and moves at 6 m/s.  Each particle's speed is still 3 m/s, but each has reversed its direction.  There is not enough information to determine the velocities after the...
Two ice skaters, Daniel (mass = 65.0 kg) and Rebecca (mass = 45.0 kg) are practicing...
Two ice skaters, Daniel (mass = 65.0 kg) and Rebecca (mass = 45.0 kg) are practicing on the ice. Daniel stops to tie his lace, and while at rest he is struck by Rebecca, who is moving 12.0 m/s before she collides with him. After the collision, Rebecca is moving forward at 8.50 m/s at a 53 degree angle with respect to her initial direction. What is the velocity vector (magnitude and direction, or x- and y-components) of Daniel after...
Two ice skaters, Daniel (mass 65.0 kg ) and Rebecca (mass 45.0 kg ), are practicing....
Two ice skaters, Daniel (mass 65.0 kg ) and Rebecca (mass 45.0 kg ), are practicing. Daniel stops to tie his shoelace and, while at rest, is struck by Rebecca, who is moving at 14.0 m/s before she collides with him. After the collision, Rebecca has a velocity of magnitude 8.00 m/s at an angle of 53.1 ∘ from her initial direction. Both skaters move on the frictionless, horizontal surface of the rink. Part A What is the magnitude of...
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v →...
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v → A = ( 34 i ̂ + 29 j ̂ ) m/s and v → B = ( 19 i ̂ + 1.6 j ̂ ) m/s . After the collision, v → A ′ = ( 4.0 i ̂ + 12 j ̂ ) m/s . What are (a) the x-component and (b) the y-component of the final velocity of B? (c) What...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1400 kg , is going from north to south at 14.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1300 kg , is going from north to south at 17.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is going from west to east, while car B , of mass 1500 kg , is going from north to south at 12 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is going from west to east, while car B , of mass 1400 kg , is going from north to south at 17 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT