Question

In: Economics

Flip a coin 10 times. Put a 1 each time the coin comes up heads and...

Flip a coin 10 times. Put a 1 each time the coin comes up heads and a 0 each time the coin comes up tails. Count the number of heads you obtained and divide by 10. What number did you get?

a. Is the number you obtained in part (a) a parameter or a statistic?

b. Now flip the coin 25 times. Put a 1 each time you obtain a heads and a 0 for tails. Count the number of heads you obtained and divide by 25.

c. What is the chance you obtain a heads in a fair coin flip? How do you believe this number is obtained using your results from parts (a) and (c)?

d. How does this process relate to the idea of a sampling distribution?

Solutions

Expert Solution

Following are my results when i flip a coin 10 times

0 0 1 1 0 1 1 0 1 1

heads: 6 times,   Tales: 4 times

by dividing with 10, we get 6/10 = 0.6

a) the above number 0.6 represents a characteristic of the sample of 10 coins, hence it is a statistic.

b) Following are the results, when i flip a coin 25 times

0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1

heads: 12 times, tables: 13 times

by dividing with 25, we get 12/25 = 0.48

c) chance of obtaining head in a fair coin flip is 0.5.

in part a) and c) we got 0.6 and 0.48 respectively. which are closer to 0.5. 0.48 is closer to 0.5 than 0.6, which means as we increase the sample size, we will get closer to 0.5 (chance of obtaining a head in fair coin flip)

d) sampling distribution refers to possible results that we can get from different/every possible sample. here, we obtain results from two samples, one is 10 and other is 25. that's why this process relates to sampling distribution.


Related Solutions

) Suppose you flip a coin. If it comes up heads, you win $20; if it...
) Suppose you flip a coin. If it comes up heads, you win $20; if it comes up tails, you lose $20. a) Compute the expected value and variance of this lottery. b) Now consider a modification of this lottery: You flip two fair coins. If both coins come up heads, you win $20. If one coin comes up heads and the other comes up tails, you neither win nor lose – your payoff is $0. If both coins come...
Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5. A coin...
Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5. A coin is continually flipped until it comes up tails, at which time that coin is put aside and we start flipping the other one. (a) What proportion of flips use coin 1? (b) If we start the process with coin 1 what is the probability that coin 2 is used on the fifth flip? (c) What proportion of flips land heads?
A coin was flipped 60 times and came up heads 38 times. At the .10 level...
A coin was flipped 60 times and came up heads 38 times. At the .10 level of significance, is the coin biased toward heads? (a-1) H0: ππ ≤ .50 versus H1: ππ > .50. Choose the appropriate decision rule at the .10 level of significance. Reject H0 if z > 1.282 Reject H0 if z < 1.282 (a-2) Calculate the test statistic.
A coin was flipped 72 times and came up heads 44 times. At the .10 level...
A coin was flipped 72 times and came up heads 44 times. At the .10 level of significance, is the coin biased toward heads? (a-2) Calculate the Test statistic. (Carry out all intermediate calculations to at least four decimal places. Round your answer to 3 decimal places.) Test statistic
Create a histogram on excel for a coin toss. Flip the coin 6 times, each time...
Create a histogram on excel for a coin toss. Flip the coin 6 times, each time moving down to the left (for heads) and to the right (for tails). Consider it a success if when flipping a coin, the coin lands with the head side facing up. Then the probability of a success is .5 (p=.5) and the probability of failure is .5 (q=.5) for each event of flipping a coin. In this lab you will repeat a procedure of...
Create a histogram on excel for a coin toss. Flip the coin 6 times, each time...
Create a histogram on excel for a coin toss. Flip the coin 6 times, each time moving down to the left (for heads) and to the right (for tails). Consider it a success if when flipping a coin, the coin lands with the head side facing up. Then the probability of a success is .5 (p=.5) and the probability of failure is .5 (q=.5) for each event of flipping a coin. In this lab you will repeat a procedure of...
Flip a fair coin 4 times. Let ? and ? denote the number of heads and...
Flip a fair coin 4 times. Let ? and ? denote the number of heads and tails correspondingly. (a) What is the distribution of ?? What is the distribution of ? ? (b) Find the joint PMF. Are ? and ? independent? (c) Calculate ?(? ?) and ?(X≠?)(d) Calculate C??(?, ? ) and C???(?, ? )
Your unfair coin comes up heads with probability 0.6. You flip it until you get four...
Your unfair coin comes up heads with probability 0.6. You flip it until you get four heads in a row. Let t be the expected number of times you flip. Write an equation for t. (Your equation, if solved, should give the value of t).
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
1. Flip a fair coin ten times. Find the probability of at least seven heads. 2....
1. Flip a fair coin ten times. Find the probability of at least seven heads. 2. Draw five cards at once from a deck. Find the probability of getting two pairs. 3. Roll a die infinitely times. Find the probability that you see an even number before you see an one. 4. You and your friend take turns to draw from an urn containing one green marble and one hundred blue marbles, one at a time and you keep the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT