Question

In: Statistics and Probability

A coin was flipped 72 times and came up heads 44 times. At the .10 level...

A coin was flipped 72 times and came up heads 44 times. At the .10 level of significance, is the coin biased toward heads? (a-2) Calculate the Test statistic. (Carry out all intermediate calculations to at least four decimal places. Round your answer to 3 decimal places.) Test statistic

Solutions

Expert Solution

We need to carry out a hypothesis test verify the biasedness:

Step 1: Formulate a hypothesis:

Ho : p ≤ 0.5

Ha: p > 0.5

Where,

Probability of getting a head (Generally probability of getting a head from a coin is always 0.5)

Step 2: Set up the level of significance

The given level of significance is 0.10

Step 3: Deciding the test statsitic:

Z-test will be used to compute the test statistic

Following formula can be used to calculate the test statistic:

Step 4: Calculating the test statistic:

By putting given values in the above formulas, we get:

Step 5: Conclusion

By referring to the z table for z = 1.86 , we get p value = 0.0314.

Since, the calculated p value (0.0314) is less than level of significance (0.1). Therefore, Null hypothesis will rejected.

This means that the probability of getting the head is more than 0.5 or we can say the coin is biased towards head.


Related Solutions

A coin was flipped 60 times and came up heads 38 times. At the .10 level...
A coin was flipped 60 times and came up heads 38 times. At the .10 level of significance, is the coin biased toward heads? (a-1) H0: ππ ≤ .50 versus H1: ππ > .50. Choose the appropriate decision rule at the .10 level of significance. Reject H0 if z > 1.282 Reject H0 if z < 1.282 (a-2) Calculate the test statistic.
If a heads is flipped, then the coin is flipped 4 more times and the number...
If a heads is flipped, then the coin is flipped 4 more times and the number of heads flipped is noted; otherwise (i.e., a tails is flipped on the initial flip), then the coin is flipped 3 more times and the result of each flip (i.e., heads or tails) is noted successively. How many possible outcomes are in the sample space of this experiment?
A coin is flipped 80 times, and this results in 36 “Heads”. Set up a test...
A coin is flipped 80 times, and this results in 36 “Heads”. Set up a test to determine whether the coin is fair
(A) Discuss the probability of landing on heads if you flipped a coin 10 times? (B)...
(A) Discuss the probability of landing on heads if you flipped a coin 10 times? (B) What is the probability the coin will land on heads on each of the 10 coin flips? (C) Apply this same binomial experiment to a different real-world situation. Describe a situation involving probability? please explain each and show work. showing the steps to the answer would be great..
A coin is flipped 34 times and heads is observed 22 times. Assuming this proportion is...
A coin is flipped 34 times and heads is observed 22 times. Assuming this proportion is normal for this particular​ coin, if the coin is flipped 50​ times, what is the probability that heads is observed at least 25​ times? The probability is: (Round to 4 decimal places)
a coin, assumed to be fair, is flipped thirty six times. Five heads are observed. An...
a coin, assumed to be fair, is flipped thirty six times. Five heads are observed. An approximate 95 percent confidence interval for this number of heads can be constructed, to two decimal places, as: a(-1.09,11.09) b(0.00,10.88) c(0.07,9.95) d(-0.88,10.88) e(12.12,23.88)
A coin is flipped seven times. What is the probability of getting heads six or fewer...
A coin is flipped seven times. What is the probability of getting heads six or fewer times? I know how to solve this with the probability equation. 2x2x2x2x2x2x2=128 total outcomes Which is p1+p2=1 -> p1=1-p2-=1-1/128= 127/128 is the answer. But whenever I try to solve it with the permutation formula I get a wrong answer n!/ k!(n!-k!) = 7!/6!(7!-6!) = 7 7/128 where am I wrong? can someone explain to me what am I doing wrong?
Flip a coin 10 times. Put a 1 each time the coin comes up heads and...
Flip a coin 10 times. Put a 1 each time the coin comes up heads and a 0 each time the coin comes up tails. Count the number of heads you obtained and divide by 10. What number did you get? a. Is the number you obtained in part (a) a parameter or a statistic? b. Now flip the coin 25 times. Put a 1 each time you obtain a heads and a 0 for tails. Count the number of...
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
14. A coin is flipped 100 times, and 59 heads are observed. Find a 80% confidence...
14. A coin is flipped 100 times, and 59 heads are observed. Find a 80% confidence interval of π (the true population proportion of getting heads) and draw a conclusion based on the collected data. Find the P-Value of the test. Ha: π =1/2. Vs. Ha: π ≠1/2. A) Less than 1%. B) Between 1% and 2% C) Between 2% and 3% D) Between 3% and 4% E) Between 4% and 5% F) Between 5% and 7% G) Between 7%...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT