Question

In: Advanced Math

Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)

Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)

Solutions

Expert Solution


Related Solutions

. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
Find the general solution of the following ODE: y''x^2 − 3xy' + 3y = 2/x ,...
Find the general solution of the following ODE: y''x^2 − 3xy' + 3y = 2/x , for x > 0.
Find a power series solution of this ODE: y''+x^2y'=0 ; y(0)=1 y'(0)= 2
Find a power series solution of this ODE: y''+x^2y'=0 ; y(0)=1 y'(0)= 2
. Consider a Bessel ODE of the form: x^2y"+xy'+(x^2-1)y=0 What is the general solution to this...
. Consider a Bessel ODE of the form: x^2y"+xy'+(x^2-1)y=0 What is the general solution to this ODE assuming that the domain of the problem includes x=0? Why?
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x...
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x .
Find the general solution y(t) to the following ODE using ONLY the Variation of Parameters: y"+4y'-2y...
Find the general solution y(t) to the following ODE using ONLY the Variation of Parameters: y"+4y'-2y = 2x2-3x+6
2. Find the general solution to the differential equation x^2y''+ y'+y = 0 using the Method...
2. Find the general solution to the differential equation x^2y''+ y'+y = 0 using the Method of Frobenius and power series techniques.
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution...
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution using undetermined coeffiecients
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution...
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution using undetermined coeffiecients
1. Find the general solution to the following ODE: y′′′+ 4y′= sec(2x) 2. Find the solution...
1. Find the general solution to the following ODE: y′′′+ 4y′= sec(2x) 2. Find the solution to the following IVP: 2y′′+ 2y′−2y= 6x2−4x−1 y(0) = −32 y′(0) = 5 3. Verify that y1=x1/2ln(x) is a solution to 4x2y′′+y= 0, and use reduction of order to find a second solution y2. 4. Find the general solutions to the following ODEs: a) y′′′−y′= 0. b) y′′+ 2y′+y= 0. c) y′′−4y′+ 13y= 0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT