Question

In: Mechanical Engineering

A pump operating at steady state receives 1.5 kg/s of liquid water at 50oC, 1.5 MPa....

A pump operating at steady state receives 1.5 kg/s of liquid water at 50oC, 1.5 MPa. The pressure of the water at the pump exit is 14 MPa. The magnitude of the work required by the pump is 25.2 kW. Stray heat transfer and changes in kinetic and potential energy are negligible.

Determine the work required by a reversible pump operating with the same conditions, in kW, and the isentropic pump efficiency.

Solutions

Expert Solution

ANSWER:-

Given that,

Let us consider that, A pump operating at steady state receives 1.5 kg/s of liquid water at 50oC, 1.5 MPa. The pressure of the water at the pump exit is 14 MPa. The magnitude of the work required by the pump is 25.2 kW. Stray heat transfer and changes in kinetic and potential energy are negligible.


Related Solutions

2 kg/s of steam enters a turbine operating at steady state at 1 MPa, 200oC and...
2 kg/s of steam enters a turbine operating at steady state at 1 MPa, 200oC and exits at 40oC with a quality of 83%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the power developed by the turbine, in kW, (b) the change in specific entropy from inlet to exit, in kJ/kg·K.
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to...
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 2.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power developed by the turbine, in kW.
2) Operating a steady-state, a well insulated mixing chamber receives two input liquid streams of the...
2) Operating a steady-state, a well insulated mixing chamber receives two input liquid streams of the same substance but with temperatures T1 and T2 and mass flow rates m ̇ 1 and m ̇ 2 respectively. The streams are mixed in the chamber, exiting as a single stream with T3 and m ̇ 3. Assuming the substance is incompressible with constant specific heat C, that potential energy, kinetic energy, and pressure changes are negligible, obtain an expression for a) T3...
A pump steadily delivers 8.94 kg/s of water at the conditions given below. Calculate the pump...
A pump steadily delivers 8.94 kg/s of water at the conditions given below. Calculate the pump power (hp). The rate of heat transfer from the pump to the surroundings is Q = 1.61 kW. There are no changes in kinetic or potential energy. Pump Inlet Temperature = 50oC Pump Inlet Pressure = 1.75 MPa Pump Exit Temperature = 50oC Pump Exit Pressure = 4.17 MPa
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.33, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam exits the turbine with a pressure of 100 kPa. Determine the minimum exit quality and the maximum power output of the turbine in kW.
A steam turbine receives superheated steam at 18.0 kg/s, 500.°C, and 3.00 MPa and exhausts it...
A steam turbine receives superheated steam at 18.0 kg/s, 500.°C, and 3.00 MPa and exhausts it to 10 kPa with a quality of 96%. If the turbine is assumed to be internally reversible, determine the rate of heat loss from the turbine surface if the power output is 20.MW The surface temperature of the turbine is uniform at 350.°C, and the local environment (ground state) is taken to be saturated liquid water at T0 = 20.0°C. Neglect all flow stream...
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the...
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the specific volume, Energy, Enthalpy and Entropy?
The figure below gives data for an ideal vapor-compression heat pump cycle operating at steady state...
The figure below gives data for an ideal vapor-compression heat pump cycle operating at steady state with Refrigerant 134a as the working fluid. The heat pump provides heating at a rate of 15 kW to maintain the interior of a building at TH = 20°C when the outside temperature is TC = 0°C. State p (bar) h (kJ/kg) 1 2.4 244.1 2 10 273.6 3 10 105.3 4 2.4 105.3 Determine: (a) the temperatures at the principal states of the...
A mass of 3 kg of water at 50oC has been heated to vapour at a...
A mass of 3 kg of water at 50oC has been heated to vapour at a temperature of 125oC in an oven. The specific heat capacities for water in the form of liquid (Cw), solid (Cice) and gas (Cv) are 4.187 kJ.kg-1.K-1, 2.108 kJ.kg-1.K-1, and 1.996 kJ.kg-1.K-1, respectively. Also, latent heats of fusion and vaporization are given as 3.33 x 105 J.kg-1 and 2.22 x 103 J.kg-1, respectively. NB: Number your answers correctly! (a) What would be the entropy of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT