Question

In: Mechanical Engineering

A steam turbine receives superheated steam at 18.0 kg/s, 500.°C, and 3.00 MPa and exhausts it...

A steam turbine receives superheated steam at 18.0 kg/s, 500.°C, and 3.00 MPa and exhausts it to 10 kPa with a quality of 96%. If the turbine is assumed to be internally reversible, determine the rate of heat loss from the turbine surface if the power output is 20.MW The surface temperature of the turbine is uniform at 350.°C, and the local environment (ground state) is taken to be saturated liquid water at T0 = 20.0°C. Neglect all flow stream kinetic and potential energies in this problem
Enthalpy at state # 1 is?
Entropy at state #2 is ?
Exergy at state 2 is ?
Heat Transfer through the system is?
second law efficiency is?

Solutions

Expert Solution


Related Solutions

An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam exits the turbine with a pressure of 100 kPa. Determine the minimum exit quality and the maximum power output of the turbine in kW.
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa,...
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with a quality of 96%. Calculate the efficiency of the turbine and the total power output.
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa,...
A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, with a quality of 96%. Find the total power out of the adiabatic turbine. Calculate the efficiency of the turbine
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure...
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.5 bar, and liquid leaves the condenser at 0.4 bar at 75°C. The pressure is increased to 20.1 MPa across the pump. The turbine and pump have isentropic efficiencies of 81 and 85%, respectively. Cooling water enters the condenser at 20°C with a mass flow rate of 70.7 kg/s and exits the condenser at 38°C. For the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat. [25] b) Calculate the same quantities assuming that the pump and each turbine...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) For a pressure of 7 bar right after the first stage turbine in the ideal Rankine cycle, create two plots: thermal efficiency as a function of the reheat temperature from 200 °C to 500 °C; and the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C. Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat  
2 kg/s of steam enters a turbine operating at steady state at 1 MPa, 200oC and...
2 kg/s of steam enters a turbine operating at steady state at 1 MPa, 200oC and exits at 40oC with a quality of 83%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the power developed by the turbine, in kW, (b) the change in specific entropy from inlet to exit, in kJ/kg·K.
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450...
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450 C with a velocity of 140 m/s. the exit of the turbine is 800 kPa and 300 C at a very low velocity. Calculate a.) the work produced in (MW) by the turbine, and b.) The entropy generated in (kW/k)
A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The...
A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The exit stream leave the turbine is at 0.8 MPa and is known to contain a mixture of saturated vapor and liquid. The steam rate through the turbine is 1000 kg/h. A (negligible) fraction of exit stream is bled through a throttle valve to 0.10 MPa and is found to be 1250 C. The measured output of the turbine is 100 kW. a) Determine the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT