Question

In: Math

street performer offers you a chance to play his game for the low price of $10....

street performer offers you a chance to play his game for the low price of $10.

His game involves you pushing two different buttons. One of the buttons, when pushed, has a 10% chance of winning you $40;

and the oth er button, when pushed, has a 20% chance of winning you $25. You are allowed two button presses( e ither pushing the same button twice or pushing each button once) in a single game.

Is it worth playing?

Solutions

Expert Solution


Related Solutions

A game of chance offers the following odds and payoffs. Each play of the game costs...
A game of chance offers the following odds and payoffs. Each play of the game costs $100, so the net profit per play is the payoff less $100. Probability Payoff Net Profit 0.10 $700 $600 0.50 100 0 0.40 0 –100 a-1. What is the expected cash payoff? (Round your answer to the nearest whole dollar amount.) a-2. What is the expected rate of return? (Enter your answer as a percent rounded to the nearest whole number.) b-1. What is...
A game of chance offers the following odds and payoffs:
A game of chance offers the following odds and payoffs:Probability         Payoff0.2                      $5000.4                        1000.4                 0a) What is the expected cash payoff?b) Suppose each play of the game costs $100. What is the expected rate of return?c) What is the variance of the expected returns?d) What is the standard deviation of the expected returns?
Consider a gambling game where a player pays $10 to play with a 40% chance of...
Consider a gambling game where a player pays $10 to play with a 40% chance of winning $20, 40% chance of winning $1, and a 20% chance of winning $0. (a) If the player’s utility function is U(M) = M, what is the expected utility from playing the game? How does it compare to the player’s utility of not playing the game, i.e. having $10 for sure? Is the player risk-neutral, risk-loving, or risk-averse, and does the player play? (b)...
12) You have a 14% chance of winning when you play a certain game. You play...
12) You have a 14% chance of winning when you play a certain game. You play the game 5 times. Let W = the number of times you win. a) Find P( W = 2 ). b) Find the mean for W. c) Find the standard deviation for W. 13) Let X= N( 5,2 ). Find x given the P( X < x ) = .984
A street performer approaches you to make a bet. He shows you three cards: one that...
A street performer approaches you to make a bet. He shows you three cards: one that is blue on both sides, one that is orange on both sides, and one that is blue on one side and orange on the other. He puts the cards in the bag, pulls out one, and puts it on the table. Both of you can see that the card is blue on top, but haven't seen the other side. The street performer bets you...
Suppose a casino offers a game that costs $20 to play. The game works as follows:...
Suppose a casino offers a game that costs $20 to play. The game works as follows: the dealer will give you a hand (randomly chosen from a regular 52 card deck) of four cards, and you will then win 10X dollars, where X is the number of aces in your hand. What are the expected winnings for this game? The expected profit? Is this a fair game?
Let’s play a game! It costs you only $10 to play! Roll two dice. If you...
Let’s play a game! It costs you only $10 to play! Roll two dice. If you roll snake eyes (two 1’s), then I’ll give you $500. If you roll anything else, then I’ll give you nothing. Using expected value, decide if you should play this game!
a) At a carnival, the chance of winning the ring toss game is 10%. Show the...
a) At a carnival, the chance of winning the ring toss game is 10%. Show the probability distribution (table) for 5 games played. b) If the carnival owner thinks that the average player has a 5% chance of winning the ring toss game, and about 500 people play each day, how many prizes should they keep in stock so that the probability of running out of prizes is less than 15% (using normal approximation)?
Suppose we have a 20% chance of winning a game and play 30 times. What is...
Suppose we have a 20% chance of winning a game and play 30 times. What is the probability we win the game 4-13 times (note: 4 and 13 are included in the interval)? Show your work. If you use a calculator, you must identify the list(s) and/or function(s), with input(s), you used. Give your answer to three decimal places.
Diane has decided to play the following game of chance. She places a $1 bet on...
Diane has decided to play the following game of chance. She places a $1 bet on each repeated play of the game in which the probability of her winning $1 is .6. She has further decided to continue playing the game until she has either accumulated a total of $3 or has lost all her money. What is the probability that Diane will eventually leave the game a winner if she started with a capital of $1? Of $2? capital...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT