Question

In: Other

Solid particles (diameter 1.5 x 10-4 m, average density = 2800 kg/m3) are settling in water...

Solid particles (diameter 1.5 x 10-4 m, average density = 2800 kg/m3) are settling in water at 30 °C. The properties of water at this temperature are viscosity (µ) = 8 x 10-4 kg/m.s and density (p) = 996 kg/m3

a) What is the terminal velocity for the particles?

b) What would be the velocity of the system in a separator with an acceleration of 390 m/s2?

Solutions

Expert Solution

Data given for solid particle :

Diameter of particle, d = 1.5*10^-4 m

Average density of particle , rhop = 2800 kg/m3


Related Solutions

(a) Calculate the settling velocity of glass spheres (density = 2467 kg/m3) having diameter as 1.5...
(a) Calculate the settling velocity of glass spheres (density = 2467 kg/m3) having diameter as 1.5 mm in water. The slurry contains 65% by weight solid. Use Newton’s law. (b) Mixture of an ore (density 2000 kg/m3) and gangue (density 7000 kg/m3) is to be separated in a hydraulic elutriator. The mixture has following size distribution, which is valid for ore as well as gangue. Predict the upward velocity of water in elutriator so that entire ore is collected in...
Approximately spherical particles of diameter 150? and density 2650 kg/m3 settle through a liquid of density...
Approximately spherical particles of diameter 150? and density 2650 kg/m3 settle through a liquid of density 1097 kg/m3 and dynamic viscosity 3.8 mPa s. The volume fraction of particles is 30% in a container of internal diameter 2 cm Calculate: a)The absolute settling velocity that is apparent to the stationary observer in the lab frame. b)The slip velocity (Us) between solid and liquid phases. c) The superficial velocity of the particles in the lab frame.
Compute the settling velocity for the following particles: very coarse sand ( diameter = 1.5 mm...
Compute the settling velocity for the following particles: very coarse sand ( diameter = 1.5 mm ) , (diameter=1.5 mm), medium sand (0.4 mm), very fine sand (0.075 mm), and clay (0.001 mm). Estimate the time for each particle to fall 6 in. in water. Assume: SG: coarse sand = 2.65, medium sand = 2.67, fine sand = 2.70, clay = 2.8 & water temperature = 60°F Note:The other solution on chegg is wrong.
Determine the terminal settling velocity of a particle having a density of 2540 kg/m3 and a...
Determine the terminal settling velocity of a particle having a density of 2540 kg/m3 and a diameter of 10 mm in water having a temperature of 10C. You may assume that the particle is a perfect sphere (shape factor = 1). What would be the settling velocity for the same particle if the water temperature decreased to 5C?
A packed bed of uniform spherical particles of diameter, d= 2.5 mm, density ρs= 4000 kg/m3...
A packed bed of uniform spherical particles of diameter, d= 2.5 mm, density ρs= 4000 kg/m3 , and voidage e= 0.45 is fluidised by means of a liquid of viscosity μ= 1 mN s/m2 and density ρ= 900 kg/m3 . (a) Starting from Carman’s and Ergun’s equations reported in the attached equations sheet, derive the corresponding expressions for the minimum fluidising velocity, umf, for both equations and explain their meaning.
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The...
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The sphere develops a terminal speed of 0.25 cm/s, what is the oil's viscosity? You may assume a small Reynolds number. Show your work.
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3....
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3. Find the magnitude of the electric field at 1.25 m from the axis of the cylinder. a) what will your gaussian surface be? Make a sketch of the solid cylinder and the gaussian surface with their radii b) Write an expression for the total electric flux through the gaussian surface, that is the LHS (Left hand side) of the Gauss' law (this expression may...
1. A slurry of particles with density 2000 kg/m3 is to be loaded into a thickener...
1. A slurry of particles with density 2000 kg/m3 is to be loaded into a thickener where the resulting voidage fraction is 0.89 and the superficial particle velocity is 2.8 mm/s. Calculate the particle system velocity. 2. Consider batch sedimentation system performed within a measuring cylinder where solids are settled according to Type 1 settling. The voidage fraction after the settling is 0.35 and the particle density is 2500 kg/m3 while the particle velocity is 0.0015 m/s. 2.1. What is...
Q. Spherical glass particles (12 mm diameter and 2500 kg/m 3 density) and spherical metal particles...
Q. Spherical glass particles (12 mm diameter and 2500 kg/m 3 density) and spherical metal particles (1.5 mm diameter and 7500 kg/m3) are falling in water (density= 1000 kg/m3) . (1) Calculate the terminal falling velocities of glass and metal particles in water for a constant friction factor of 0.22. (2) At what water velocity will fluidized beds of glass particles and metal particles have the same bed densities? The relation between fluidization velocity (uc), terminal velocity (ut) and bed...
Consider a typical settling tank of 10 m diameter and 10 m height. Inlet pipe is...
Consider a typical settling tank of 10 m diameter and 10 m height. Inlet pipe is approximately 2 m deep from the top of the tank. Perform following preliminary calculations. a. For a water-sand flowrate of 1500 m 3 /hr with 1000 ppm of sand, calculate sand particle size than can be settled in the tank. (Water: density = 1000 kg/m3 , viscosity = 1 cP; Sand: density = 2500 kg/m3 ) (6-marks) b. Consider settling of different sizes (50,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT