Question

In: Statistics and Probability

The table below lists pitches in a baseball game for two pitchers and the breakdown of...

  1. The table below lists pitches in a baseball game for two pitchers and the breakdown of “strikes” and “balls” (good pitches and bad pitches). The summary statistics are also listed.

Pitcher

Strikes

Balls

Total

Bumgarner

76

32

108

Cueto

76

41

117

  Bumgarner                  Cueto

            Sample Mean (pitches per inning) 12.0                              13.0

            Sample Variance (pitches per inning) 3.5 8

            Sample Size (# of innings) 9 9

             (an “inning” is one of the rounds in a game)

(5)        a. At the 99% level, test the alternate hypothesis that Cueto throws more pitches per inning than Bumgarner for the entire season (population of pitches):

(5)        b. Set up a 90% confidence interval for the true difference in the proportion of Balls thrown by each pitcher for the entire season:

(5)        c. Perform a hypothesis test to see if the proportion of throwing strikes for Bumgarner and Cueto is not equal for the entire season. Set the Type I error equal to 10%.

Solutions

Expert Solution

A)

Ho :   µ1 - µ2 =   0                  
Ha :   µ1-µ2 <   0                  
                          
Level of Significance ,    α =    0.01                  
                          
Sample #1   ---->  BumgarneR                
mean of sample 1,    x̅1=   12.00                  
standard deviation of sample 1,   s1 =    3.50                  
size of sample 1,    n1=   9                  
                          
Sample #2   ---->   Cueto                
mean of sample 2,    x̅2=   13.00                  
standard deviation of sample 2,   s2 =    8.00                  
size of sample 2,    n2=   9                  
                          
difference in sample means =    x̅1-x̅2 =    12.0000   -   13.0   =   -1.00  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    6.1745                  
std error , SE =    Sp*√(1/n1+1/n2) =    2.9107                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -1.0000   -   0   ) /    2.91   =   -0.344
                          
Degree of freedom, DF=   n1+n2-2 =    16                  

p-value =        0.367826   [ excel function: =T.DIST(t stat,df) ]               
Conclusion:     p-value>α , Do not reject null hypothesis             

.................

B)

sample #1   ----->     Bumgarner        
first sample size,     n1=   108          
number of successes, sample 1 =     x1=   32          
proportion success of sample 1 , p̂1=   x1/n1=   0.2963          
                  
sample #2   ----->   Cueto        
second sample size,     n2 =    117          
number of successes, sample 2 =     x2 =    41          
proportion success of sample 1 , p̂ 2=   x2/n2 =    0.350          
                  
difference in sample proportions, p̂1 - p̂2 =     0.2963   -   0.3504   =   -0.0541
level of significance, α =   0.10              
Z critical value =   Z α/2 =    1.645   [excel function: =normsinv(α/2)      
                  
Std error , SE =    SQRT(p̂1 * (1 - p̂1)/n1 + p̂2 * (1-p̂2)/n2) =     0.0623          
margin of error , E = Z*SE =    1.645   *   0.0623   =   0.1024
                  
confidence interval is                   
lower limit = (p̂1 - p̂2) - E =    -0.054   -   0.1024   =   -0.1565
upper limit = (p̂1 - p̂2) + E =    -0.054   +   0.1024   =   0.0483
                  
so, confidence interval is (   -0.1565   < p1 - p2 <   0.0483   )  

.............

C)

Ho:   p1 - p2 =   0          
Ha:   p1 - p2 ╪   0          
                  
sample #1   ----->   experimental          
first sample size,     n1=   108          
number of successes, sample 1 =     x1=   76          
proportion success of sample 1 , p̂1=   x1/n1=   0.7037          
                  
sample #2   ----->   standard          
second sample size,     n2 =    117          
number of successes, sample 2 =     x2 =    76          
proportion success of sample 1 , p̂ 2=   x2/n2 =    0.650          
                  
difference in sample proportions, p̂1 - p̂2 =     0.7037   -   0.6496   =   0.0541
                  
pooled proportion , p =   (x1+x2)/(n1+n2)=   0.6756          
                  
std error ,SE =    =SQRT(p*(1-p)*(1/n1+ 1/n2)=   0.0625          
Z-statistic = (p̂1 - p̂2)/SE = (   0.054   /   0.0625   ) =   0.8665
                      
p-value =        0.3862   [excel formula =2*NORMSDIST(z)]      
decision :    p-value>α,Don't reject null hypothesis               
                  
Conclusion:   There is not enough evidence to  the proportion of throwing strikes for Bumgarner and Cueto is not equal for the entire season

.....................

thanks

revert back for doubt

please upvote


Related Solutions

Watch a basketball, baseball, or football game. For the baseball, monitor and innings pitches for balls...
Watch a basketball, baseball, or football game. For the baseball, monitor and innings pitches for balls and strikes (all foul balls in play count as strikes). For football monitor a series of plays for runs versus passing plays. For basketball monitor one teams shots for misses versus made shots. For the collected data, conduct a runs test to see if the distribution is random.
The table below lists infant mortality in Maryland in 2007 and the estimated racial breakdown of...
The table below lists infant mortality in Maryland in 2007 and the estimated racial breakdown of the U.S. population according to the 2000 census. Calculations should be done by hand, but feel free to use software or Excel to check your work. The total U.S. population is 281,421,906. race Infant mortality (per 1000 births) - Maryland 2007 % of U.S. population (2000) White 4.6 75.1 Black 14.0 12.3 Hispanic 3.8 12.5 (1) If possible, calculate the crude infant mortality rate...
The table below lists the number of games played in a yearly best-of-seven baseball championship series,...
The table below lists the number of games played in a yearly best-of-seven baseball championship series, along with the expected proportions for the number of games played with teams of equal abilities. Use a 0.05 significance level to test the claim that the actual numbers of games fit the distribution indicated by the expected proportions. games played 4 5 6 7 actual contests 20 20 20 38 expected proportion 2/16 4/16 5/16 5/16 Ho:     A. The observed frequencies agree with...
The table below lists the number of games played in a yearly​ best-of-seven baseball championship​ series,...
The table below lists the number of games played in a yearly​ best-of-seven baseball championship​ series, along with the expected proportions for the number of games played with teams of equal abilities. Use a 0.05 significance level to test the claim that the actual numbers of games fit the distribution indicated by the expected proportions. Games Played_Actual Contests_Expected Proportion 4_17_2/16 5_21_4/16 6_23_5/16 7_35_5/16 What is the test statistic x^2 ? What is the critical value? What is the P-value?
The table below lists the number of games played in a yearly​ best-of-seven baseball championship​ series,...
The table below lists the number of games played in a yearly​ best-of-seven baseball championship​ series, along with the expected proportions for the number of games played with teams of equal abilities. Use a 0.05 significance level to test the claim that the actual numbers of games fit the distribution indicated by the expected proportions. Games_Played   Actual_contests   Expected_proportion 4   17   0.125 5   21   0.25 6   21   0.3125 7   38   0.3125 Determine the null and alternative hypotheses. Upper H 0H0​: ▼...
The following table lists a portion of Major League Baseball's (MLB's) leading pitchers, each pitcher's salary...
The following table lists a portion of Major League Baseball's (MLB's) leading pitchers, each pitcher's salary (In $ millions), and earned run average (ERA) for 2008. Salary ERA J. Santana 10.0 2.51 C. Lee 3.0 2.52 T. Lincecum 0.2 2.27 C. Sabathia 10.0 2.13 R. Halladay 9.0 2.12 J. Peavy 4.9 2.56 D. Matsuzaka 6.8 2.87 R. Dempster 7.0 2.88 B. Sheets 10.0 2.57 C. Hamels 0.4 2.83 A. Estimate the model: Salaty = Bo + B1 ERA + E....
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary...
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary (In $ millions), and earned run average (ERA) for 2008. Salary ERA J. Santana 10.0 2.49 C. Lee 4.0 2.30 T. Lincecum 0.1 2.38 C. Sabathia 8.0 2.07 R. Halladay 7.0 2.47 J. Peavy 6.2 2.80 D. Matsuzaka 7.0 2.28 R. Dempster 6.2 2.52 B. Sheets 10.7 2.69 C. Hamels 0.5 2.75 a-1. Estimate the model: Salary = β0 + β1ERA + ε. (Negative...
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary...
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary (In $ millions), and earned run average (ERA) for 2008. a-1. Estimate the model: Salary = β0 + β1ERA + ε. (Negative values should be indicated by a minus sign. Enter your answers, in millions, rounded to 2 decimal places.)Click here for the Excel Data File Salary ERA J. Santana 17.0 2.25 C. Lee 2.0 2.37 T. Lincecum 0.1 2.57 C. Sabathia 10.0 2.11...
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary...
The following table lists a portion of Major League Baseball’s (MLB’s) leading pitchers, each pitcher’s salary (In $ millions), and earned run average (ERA) for 2008. Salary ERA J. Santana 17.0 2.28 C. Lee 3.0 2.39 ⋮ ⋮ ⋮ C. Hamels 0.2 3.00 Click here for the Excel Data File a-1. Estimate the model: Salary = β0 + β1ERA + ε. (Negative values should be indicated by a minus sign. Enter your answers, in millions, rounded to 2 decimal places.)...
The ages (in years) and height (in inches) of all pitchers for a baseball team are...
The ages (in years) and height (in inches) of all pitchers for a baseball team are listed. Find the coefficient of variation for each of the two data sets.Then compare results. Height; 79,75,75,71,76,79,73,72,74,71,77,74, Age; 27,26,24,29,25,26,31,27,30,32,36,31. CV height =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT