In: Math
Solution :
Given that,
Point estimate = sample mean = = 24500
Population standard deviation = = 2350
Sample size = n = 60
a)
Standard error
= / n = 2350 / 60 = 303.38
b)
P( -z < Z < z ) = 0.95
P( Z < z ) - P( Z < -z ) = 0.95
2*P(Z < z ) - 1 = 0.95
2*P(Z < z ) = 1 + 0.95
P( Z < z ) = 1.95 / 2
P( Z < z ) = 0.975
P( Z < 1.96 ) = 0.975
z = 1.96
and
z = -1.96
c)
At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (2350 / 60 )
= 594.63
At 95% confidence interval estimate of the population mean is,
- E < < + E
24500 - 594.63 < < 24500 + 594.63
23905.37 < < 25094.63
( 23905.37 , 25094.63 )