Question

In: Advanced Math

Set up and solve the given BVP heat problem. Suppose there is a rod of length...

Set up and solve the given BVP heat problem. Suppose there is a rod of length L coinciding on the x-axis from 0 ≤ x ≤ L with insulated ends, and with an initial temperature profile of f(x).
Solve the Heat Equation

Solutions

Expert Solution

In his question use the heat equation as it is given then try to find the boundary conditions.

Use the point insulated ends to find the boundary conditions.

Then apply the separation of variables to find the general solution and hence at last use the Fourier series to calculate the remaining constants and thus we have the solution.


Related Solutions

Given the following information set up the problem in a transportation table and solve for the...
Given the following information set up the problem in a transportation table and solve for the minimum-cost plan: PERIOD 1 2 3   Demand    550       700      750         Capacity                 Regular    500       500      440           Overtime    50       50      50           Subcontract    120       120      100         Beginning inventory    100            Costs           Regular time $   60 per unit     Overtime $   80 per unit     Subcontract $   90 per unit       Inventory...
Given the following information set up the problem in a transportation table and solve for the...
Given the following information set up the problem in a transportation table and solve for the minimum-cost plan: PERIOD 1 2 3 Demand 550 700 750 Capacity Regular 500 500 440 Overtime 50 50 50 Subcontract 120 120 100 Beginning inventory 100 Costs Regular time $ 60 per unit Overtime $ 80 per unit Subcontract $ 90 per unit Inventory carrying cost $ 1 per unit per month Back-order cost $ 3 per unit per month Suppose that an inventory...
Given the following information set up the problem in a transportation table and solve for the...
Given the following information set up the problem in a transportation table and solve for the minimum-cost plan: PERIOD 1 2 3 Demand 550 700 750 Capacity Regular 500 500 440 Overtime 50 50 50 Subcontract 120 120 100 Beginning inventory 100 Costs Regular time $ 60 per unit Overtime $ 80 per unit Subcontract $ 90 per unit Inventory carrying cost $ 1 per unit per month Back-order cost $ 3 per unit per month Suppose that an inventory...
Given is the rod of length L with the linear charge of density ?=?/? . The...
Given is the rod of length L with the linear charge of density ?=?/? . The rod lies on the x axis with its midpoint at the origin. Find the electric field vector on y axis resulting from such continuous system of charge at distance y from the origin. Use this result to obtain the expression for electric field at distance y from the infinitely long wire.
A rod of length 22.00 cm has linear density (mass per length) given by λ =...
A rod of length 22.00 cm has linear density (mass per length) given by λ = 50.0 + 16.0x where x is the distance from one end, and λ is measured in grams/meter. (a) What is its mass? _______________g (b) How far from the x = 0 end is its center of mass? ________________m
A. Set up the IVP for the following mixture problem: Suppose that a large tank containing...
A. Set up the IVP for the following mixture problem: Suppose that a large tank containing 1000 gallons of pure water and that water containing 0.5 pounds of salt per gallon flows into the tank at a rate of 10 gallons per minute. The contents of the tank are kept thoroughly mixed and pumped out at the same rate so that the water level in the tank will remain constant. How much salt will be in the tank after 1...
A massless rod of length L = 2.3 m stands up straight, fixed to the ground...
A massless rod of length L = 2.3 m stands up straight, fixed to the ground by a bolt. A horizontal force of 8.2 N is applied at a vertical distance of L/2 to the right. To counter this force and keep the rod stationary, a wire is fixed at the top of the rod and attached to the ground some distance away to the left, making an angle of 45 degrees to the horizontal. a) What is the tension...
5.       Solve the following differential equation using the given initial conditions (Use convolution and set up the...
5.       Solve the following differential equation using the given initial conditions (Use convolution and set up the integral but do not integrate.)               y'’ − 2y’ + 2y = 18e−t sin3t;         y(0) = 0, y’(0) = 3
A rod of length L has a charge per unit length λ. The rod rotates around...
A rod of length L has a charge per unit length λ. The rod rotates around its center at angular frequency ω. Using the dipole approximation, find the power radiated by the rotating rod.
Suppose the length of a rod produced by a certain machine is uniformly distributed between 2.3...
Suppose the length of a rod produced by a certain machine is uniformly distributed between 2.3 and 2.8 metres. If the specification of the rod is to be between 2.25m to 2.75m, what proportion of rods from this manufacturer will fail to meet this specification? Suppose that the compressive strength of cement coming from a certain manufacturer can be modelled with a normal distribution with a mean of 6000 kilograms per square centimetre and a standard deviation of 100 kilograms...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT