Question

In: Chemistry

1 mol of an ideal gas at initial conditions p1=150 kPa, V1 =20 L was compressed...

1 mol of an ideal gas at initial conditions p1=150 kPa, V1 =20 L was compressed to p2 = 450 kPa through adiabatic reversible compression.
Determine the work, heat, change of internal energy, enthalpy and entropy for the process. The gas heat capacity is Cp,m = 29.10 J K-1 mol-1.

Solutions

Expert Solution


Related Solutions

A 29-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa...
A 29-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa . The gas is compressed adiabatically until its pressure triples, then cooled at constant volume back to 250 K, and finally allowed to expand isothermally to its original state. How much work is done on the gas? What is the minimum volume reached?
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa pressure. It is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to its initital state. 1.Find the net work done on the gas.
A 0.535-mol sample of an ideal diatomic gas at 408 kPa and 279 K expands quasi-statically...
A 0.535-mol sample of an ideal diatomic gas at 408 kPa and 279 K expands quasi-statically until the pressure decreases to 159 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
A 0.507-mol sample of an ideal diatomic gas at 393 kPa and 286 K expands quasi-statically...
A 0.507-mol sample of an ideal diatomic gas at 393 kPa and 286 K expands quasi-statically until the pressure decreases to 147 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is isothermal or adiabatic. 1.) a.) isothermal final temperature b.) volume of the gas c.) work done by the gas d.) heat absorbed 2.)    a.) adiabatic final temperature b.) volume of...
A 0.460-mol sample of an ideal diatomic gas at 404 kPa and 276 K expands quasi-statically...
A 0.460-mol sample of an ideal diatomic gas at 404 kPa and 276 K expands quasi-statically until the pressure decreases to 168 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature__________J volume of the gas_______L work done by the gas_________J heat absorbed___________J (b) adiabatic final temperature__________K volume of the gas___________L work done by the gas_________J heat...
An ideal gas with γ=1.4 occupies 3.0 L at 300 K and 120 kPa pressure and...
An ideal gas with γ=1.4 occupies 3.0 L at 300 K and 120 kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to state A. Part A Find the net work done on the gas. Express your answer using two significant figures. W = Part B Find the minimum volume reached. Express your answer using two significant figures. Vmin =
A cylinder contains 4 mol of an ideal gas at 30oC.  If it expands from an initial...
A cylinder contains 4 mol of an ideal gas at 30oC.  If it expands from an initial volume of 1.0 m3 to 2.0 m3 while maintained at a constant pressure of 200 kPa. What is the change in the temperature of the gas? How much heat is absorbed or released from the system, over the process?   The pressure is then reduced while the gas is held at a constant volume. If over this process the gas is returned to its original...
. An ideal gas initially contained at 1 bar and 25ºC, is compressed to a final...
. An ideal gas initially contained at 1 bar and 25ºC, is compressed to a final state of 5 bar and 25ºC. Although the initial and final temperatures are the same, the process is NOT isothermal. Rather, the change of state occurs in two steps. First, the gas is cooled at constant pressure (i.e., 1 bar). Second, the gas is heated at constant volume. Please calculate Q, W, DU, and DH for the two steps. Note: Cp*=29.1 J/mol/K, and 1...
Expand 1.00 mol of a monatomic gas, initially at 3.60 kPa and 313 K, from initial...
Expand 1.00 mol of a monatomic gas, initially at 3.60 kPa and 313 K, from initial volume Vi = 0.723 m3 to final volume Vf = 2.70 m3. At any instant during the expansion, the pressure p and volume V of the gas are related by p = 3.60 exp[(Vi - V)/a], with p in kilopascals, Vi and V are in cubic meters, and a = 2.10 m3. What are the final (a) pressure and (b)temperature of the gas? (c)...
One mole of a diatomic (rigid rotator) ideal gas has an initial volume of 1 L...
One mole of a diatomic (rigid rotator) ideal gas has an initial volume of 1 L and temperature of 400 K (state A). First the gas undergoes an isometric process such that the final pressure is 4 times the initial pressure (state B). It then expands isothermally back to the initial pressure (state C). Then it is compressed isobarically back to its original state. 1. Draw a PV diagram illustrating the above cycle. On the diagram indicate where the 3...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT