In: Chemistry
Determine the pH of each of the following solutions: 0.25M of CH3NH3I and 0.25M KI
CH3NH3+(aq) --> H+(aq) + CH3NH2(aq)
let x = [H+], then x = [CH3NH2]
and (0.24 - x) = [CH3NH3+]
CH3NH2(aq) + H2O(l) --> CH3NH3+(aq) + OH-(aq)
Kb = 10-pKb = 10-3.36 = 4.37 * 10-4
Kb = Kw/Ka ==> Ka = Kw/Kb = [H+][OH-][CH3NH2]/[CH3NH3+][OH-]
=
[H+][CH3NH2]/[CH3NH3+] = 10-14/4.37 * 10-4 =
2.29 * 10-11
CH3NH3+(aq) --> CH3NH2(aq) + H+(aq)
let = x= [H+] = [CH2NH2]
and 0.24 - x = [CH3NH3+]
x2/(0.24 - x) = 2.29 * 10-11
x2 + 2.29 * 10-11 - 5.49 * 10-12 =
0
x = [H+] = 2.34 * 10-6 M ==> pH = -log[H+] =
-log(2.34 * 10-6) = 5.63
I am giving one example in case of formic acid dissociation, please follow the same procedure for calculating the pH for KI
HCOOH(aq) --> HCOO-(aq) + H+(aq)
Ka = 10-pKa = 10-3.744 = 1.8 * 10-4
Kb = Kw/Ka = 10-14/1.8 * 10-4 = 5.55 *
10-11
HCOO-(aq) + H2O(l) --> HCOOH(aq) + OH-(aq)
let x = [OH-]
then x = [HCOOH]
and 0.25 - x = [HCOO-]
x^2/(0.25-x) = 5.55 * 10^-11
x^2 - 5.55 * 10-11x - 1.38 * 10^-11 = 0
x = [OH-] = 3.71 * 10^-6 M ==> pOH = -log[OH-] = -log(3.71 *
10^-6) = 5.43
pH = 14 - pOH = 14 - 5.43 = 8.57
Thank you and good luck .