In: Math
Assume that X is normally distributed with a mean of 15 and a standard deviation of 2. Determine the value for x that solves:
P(X>x) = 0.5.
P(X < 13).
P(13 < X < 17).
a)
P(X > x) = 0.5
Or, P((X - )/ > (x - )/) = 0.5
Or, P(Z > (x - 15)/2) = 0.5
Or, P(Z < (x - 15)/2) = 0.5
Or, (x - 15)/2 = 0
Or, x = 0 * 2 + 15
Or, x = 15
b) P(X < 13)
= P((X - )/ < (13 - )/)
= P(Z < (13 - 15)/2)
= P(Z < -1)
= 0.1587
c) P(13 < X < 17)
= P((13 - )/ < (X - )/ < (17 - )/)
= P((13 - 15)/2 < Z < (17 - 15)/2)
= P(-1 < Z < 1)
= P(Z < 1) - P(Z < -1)
= 0.8413 - 0.1587
= 0.6826