In: Chemistry
This is a buffer
if pH is required to be 7.1 then
we need to use Hendesron hasslebach equation
Recall that, in equilibrium
Ka = [H+][A-]/[HA]
Multiply both sides by [HA]
[HA]*Ka = [H+][A-]
take the log(X)
log([HA]*Ka) = log([H+][A-])
log can be separated
log([HA]) + log(Ka) = log([H+]) + log([A-])
note that if we use "pKx" we can get:
pKa = -log(Ka) and pH = -log([H+])
substitute
log([HA]) + log(Ka) = log([H+]) + log([A-])
log([HA]) + -pKa = -pH + log([A-])
manipulate:
pH = pKa + log([A-]) - log([HA])
join logs:
pH = pKa + log([A-]/[HA])
in this case
we need to identify the base and acid
acid --> NaH2PO4 .--> H2PO4-
base = Na2HPO4 --> HPO4-
then
pH = pKa + log([A-]/[HA])
becomes
pH = pKa2 + log([HPO4-2]/[H2PO4-])
pKa2 for this ionization
Ka2 = 6.23*10^-8
pKa = -log( 6.23*10^-8) = 7.21
substitute
7.1= 7.21+ log([HPO4-2]/[H2PO4-])
[HPO4-2]/[H2PO4-] = 10^(7.10-7.21)
[HPO4-2]/[H2PO4-]= 0.776247
initially:
mmol of Na2HPO4 = HPO4-2 = MV = 0.02*500 = 10 mmol
mmol of NaH2PO4 = H2PO4- = 0
in equilbirium
mmol of Na2HPO4 = HPO4-2 = MV = 0.02*500 = 10 mmol
mmol of NaH2PO4 = H2PO4- = MV = 1*V
note that
[HPO4-2]/[H2PO4-]= 0.776247 must be kept
10 / (1*V) = 0.776247
V = 10/0.776247 = 12.882 mL of NaH2PO4 solution
Note that the answer can't be 50 mL
This is too much(proof)
pH= 7.21+ log([HPO4-2]/[H2PO4-])
mmol of HPO4-2 = 0.02*500 = 10
mmol of H2PO4- = 1*50= 50
pH= 7.21+ log(10/50) = 6.51 which is TOO low for the goal of 7.1