In: Chemistry
Calculate the pH and the equilibrium
concentrations of
H2AsO4-,
HAsO42- and
AsO43- in a
0.2920 M aqueous arsenic acid
solution.
For H3AsO4, Ka1 =
2.5×10-4, Ka2 =
5.6×10-8, and Ka3 =
3.0×10-13
pH = _____ | |
[H2AsO4-] = | _____ M |
[HAsO42-] = | _____ M |
[AsO43-] = | _____ M |
Ka1 = 2.5 x 10^-4
H3AsO4 ----------------> H2AsO4- + H+
0.292 0 0
0.292 - x x x
Ka1 = [x][x]/[0.292-x]
2.5 x 10^-4 = x^2/(0.292-x)
x^2 + 2.5 x 10^-4 x- 7.3 x 10^-5 =0
x = 8.42 x 10^-3
[H2AsO4-] = x
[H2AsO4-] =8.42 x 10^-3 M
[H+] = x = 8.43 x 10^-3 M
almost maximum H+ ions comes from first ionisation so
pH = -log [H+] = -log(8.42 x 10^-3)
pH= 2.08
[HAsO4^-2] = Ka2 = 5.6 x10^-8 M
HAsO4^2 --------------------->AsO4^-3 + H+
5.6 x10^-8 0 8.42x 10^-3
5.6 x10^-8- z z 8.42x 10^-3 +z
Ka3 = [ AsO4^-3][H+]/[HAsO4^2]
3.0x 10^-13 = (z) x 8.42x 10^-3 +z)/ (5.6 x10^-8 z )
z= 2.00 x 10^-18 M
[AsO4^-3] = z= 2.00 x 10^-18 M