In: Statistics and Probability
A random selection of students at a school were chosen at random and how long they spent eating compared to how many calories they consumed was recorded as the following:
| 
 Time, minutes  | 
 21.4  | 
 30.8  | 
 37.7  | 
 33.5  | 
 32.8  | 
 39.5  | 
 22.8  | 
| 
 Calories  | 
 472  | 
 498  | 
 465  | 
 456  | 
 423  | 
 437  | 
 508  | 
| 
 Time, minutes  | 
 34.1  | 
 33.9  | 
 43.8  | 
 42.4  | 
 43.1  | 
 29.2  | 
 31.3  | 
| 
 Calories  | 
 431  | 
 479  | 
 454  | 
 450  | 
 410  | 
 504  | 
 437  | 
| 
 Time, minutes  | 
 28.6  | 
 32.9  | 
 30.6  | 
 35.1  | 
 33.0  | 
 43.7  | 
|
| 
 Calories  | 
 489  | 
 436  | 
 480  | 
 439  | 
 444  | 
 408  | 
1. Make a scatterplot for the data
2. Find the LSRL
3. Describe the slope and the y-intercept, do they make sense?
4. Create a Residual Plot for the data
5. Create a 95% confidence interval for the slope of the line
1)

2)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 21.4 | 472 | 159.0121 | 256.0000 | -201.7600 | 
| 30.8 | 498 | 10.3041 | 1764.0000 | -134.8200 | 
| 37.7 | 465 | 13.6161 | 81.0000 | 33.2100 | 
| 33.5 | 456 | 0.2601 | 0.0000 | 0.0000 | 
| 32.8 | 423 | 1.4641 | 1089.0000 | 39.9300 | 
| 39.5 | 437 | 30.1401 | 361.0000 | -104.3100 | 
| 22.8 | 508 | 125.6641 | 2704.0000 | -582.9200 | 
| 34.1 | 431 | 0.0081 | 625.0000 | -2.2500 | 
| 33.9 | 479 | 0.0121 | 529.0000 | -2.5300 | 
| 43.8 | 454 | 95.8441 | 4.0000 | -19.5800 | 
| 42.4 | 450 | 70.39 | 36.00 | -50.34 | 
| 43.1 | 410 | 82.63 | 2116.00 | -418.14 | 
| 29.2 | 504 | 23.14 | 2304.00 | -230.88 | 
| 31.3 | 437 | 7.34 | 361.00 | 51.49 | 
| 28.6 | 489 | 29.27 | 1089.00 | -178.53 | 
| 32.9 | 436 | 1.23 | 400.00 | 22.20 | 
| 30.6 | 480 | 11.63 | 576.00 | -81.84 | 
| 35.1 | 439 | 1.19 | 289.00 | -18.53 | 
| 33 | 444 | 1.02 | 144.00 | 12.12 | 
| 43.7 | 408 | 93.90 | 2304.00 | -465.12 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 680.20 | 9120.00 | 758.06 | 17032.00 | -2332.60 | 
| mean | 34.01 | 456.00 | SSxx | SSyy | SSxy | 
sample size ,   n =   20  
       
here, x̅ = Σx / n=   34.010   ,
    ȳ = Σy/n =  
456.000  
          
       
SSxx =    Σ(x-x̅)² =    758.0580  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   -2332.6  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   -2332.6  
/   758.058   =   -3.07707
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
560.65126          
          
       
so, regression line is   Ŷ =  
560.651   +   -3.077  
*x
3) slope: for every minutes increase in time spent on eating, calorie consumed get decreased by 3.077
4)

5)
confidence interval for slope      
           
α=   0.05      
       
t critical value=   t α/2 =   
2.101   [excel function: =t.inv.2t(α/2,df) ]  
   
estimated std error of slope = Se/√Sxx =   
23.39803   /√   758.06  
=   0.850
          
       
margin of error ,E= t*std error =    2.101  
*   0.850   =   1.785
estimated slope , ß^ =    -3.0771  
           
          
       
          
       
lower confidence limit = estimated slope - margin of error
=   -3.0771   -   1.785  
=   -4.8625
upper confidence limit=estimated slope + margin of error
=   -3.0771   +   1.785  
=   -1.2917