In: Chemistry
15.1 L N2 at 25 °C and 125 kPa and 35.9 L O2 at 25 °C and 125 kPa were transferred to a tank with a volume of 5.00 L. What is the total pressure at 41 °C?
Given,
The volume of nitrogen (V) = 15.1 L
Temperature(T) = 25 oC + 273.15 = 298.15 K
Pressure(P) = 125 kPa x ( 1000 Pa / 1 kPa) x ( 1 atm / 101325 Pa) = 1.234 atm
Also given,
The volume of oxygen (V) = 35.9 L
Temperature(T) = 25 oC + 273.15 = 298.15 K
Pressure(P) = 125 kPa x ( 1000 Pa / 1 kPa) x ( 1 atm / 101325 Pa) = 1.234 atm
Calculating the number of moles of N2 and O2 from the given data,
We know, the ideal gas equation,
PV = nRT
Rearranging the formula,
n = PV/RT
For N2 ,
n = (1.234 atm x 15.1 L) / (0.08206 L.atm/mol.K x 298.15 K)
n = 0.7614 mol N2
Similarly, for O2,
n = (1.234 atm x 35.9 L) / (0.08206 L.atm/mol.K x 298.15 K)
n = 1.8102 mol O2
Now,
total moles = Moles of N2 + Moles of O2
total moles = 0.7614 mol + 1.8102 mol
total moles = 2.5716 mol
Now, the new volume = 5.00 L
New temperature(T) = 41 oC + 273.15 = 314.15 K
Now, rearranging the ideal gas equation,
P = nRT / V
P = ( 2.5716 mol x 0.08206 L.atm/mol.K x 314.15 K) / 5.00 L
P = 13.26 atm
Now, converting atm to kPa,
= 13.26 atm x ( 101325 Pa / 1 atm) x ( 1 kPa / 1000 Pa)
= 1343.4 kPa
Thus, the total pressure = 1.34 x 103 kPa