Question

In: Other

8.56. Humid air at 70°C and 1.0 atm with 6°C of superheat is fed to a...

8.56. Humid air at 70°C and 1.0 atm with 6°C of superheat is fed to a condenser. Gas and liquid streams leave the condenser in equilibrium at 25°C and 1 atm. (a) Assume a basis of calculation of 100 mol inlet air, draw and label a flowchart (including Q in the labeling), and carry out a degree-of-freedom analysis to verify that all labeled variables can be determined. (b) Write in order the equations you would solve to calculate the mass of water condensed (kg) per cubic meter of air fed to the condenser. Circle the unknown variable for which you would solve each equation. Do not do any of the calculations. (c) Prepare an inlet–outlet enthalpy table, inserting labels for unknown specific enthalpies (H^1, H^2, . . .). Write expressions for the labeled specific enthalpies, substituting values or formulas for heat capacities and latent heats but not calculating the values of the specific enthalpies. Then write an expression for the rate at which heat must be transferred from the unit (kJ per cubic meter of air fed to the condenser). (d) Solve your equations by hand to calculate kg H2O condensed/m3 air fed and kJ transferred/m3 air fed. (e) What cooling rate (kW) would be required to process 250 m3 air fed/h?

Solutions

Expert Solution


Related Solutions

1.Humid air at 50 ºC and 1.0 atm with 2 ºC of superheat is fed to...
1.Humid air at 50 ºC and 1.0 atm with 2 ºC of superheat is fed to the condenser. Gas and liquid streams leave the condenser in equilibrium at 20 ºC and 1 atm. (a)Assume a basis of calculation of 100 mol inlet air, draw and label a flow chart for the process. (b)Calculate the mass of water condensed per m3 of air fed and kJ transferred per m3 air fed. (c)What cooling rate (kW) would be required to process 250...
Humid air at 70.0 °C and 1.00 atm with 2.00 °C of superheat is fed to...
Humid air at 70.0 °C and 1.00 atm with 2.00 °C of superheat is fed to a condenser. Gas and liquid streams leave the condenser in equilibrium at 15.0 °C and 1.00 atm. Use material balances to determine the following quantities for a basis of 100.0 mol of warm, humid air fed to the condenser. Mole fraction of water in the feed: mol H2O (v) / mol Mole fraction of water in the chilled air: mol H2O (v) / mol...
Humid air at 155 kPa, 40°C, and 70 percent relative humidity is cooled at constant pressure...
Humid air at 155 kPa, 40°C, and 70 percent relative humidity is cooled at constant pressure in a pipe to its dew-point temperature. Calculate the heat transfer, in kJ/kg dry air, required for this process. Use data from the tables. The heat transfer is  kJ/kg dry air.
Air at 90.0°C and 1.0 atm (absolute) contains 7.0 mole% water. A continuous stream of this...
Air at 90.0°C and 1.0 atm (absolute) contains 7.0 mole% water. A continuous stream of this air enters a compressor–condenser, in which the temperature is lowered to 18.6°C and the pressure is raised to 2.90 atm. The air leaving the condenser is then heated isobarically to 90.0°C. Calculate the fraction of water that is condensed from the air, the relative humidity of the outlet air at 90.0°C, and the ratio (m3 outlet air at 90.0°C)/(m3 feed air) at 90.0°C. Find...
Humid air at 300 kPa, 10°C, and 90% relative humidity is heated in a pipe at...
Humid air at 300 kPa, 10°C, and 90% relative humidity is heated in a pipe at constant pressure to 50°C. Calculate the amount of heat, in kJ/kg dry air, required
Humid air is enclosed in a 5.00-liter flask at 40.0°C. The flask is slowly cooled. When...
Humid air is enclosed in a 5.00-liter flask at 40.0°C. The flask is slowly cooled. When the temperature reaches 20.0°C, drops of moisture become visible on the flask wall. Although the pressure in the flask changes when the temperature drops, it remains close enough to 1 atm for the psychrometric chart to provide a close representation of the behavior of the system throughout the process. Use a psychometric chart to determine the relative humidity, absolute humidity, and wet-bulb temperature of...
Part A) A sample of a gas at 25°C and 1.0 atm pressure has a volume...
Part A) A sample of a gas at 25°C and 1.0 atm pressure has a volume of 2.5 L. The container is allowed to expand until the pressure is 0.85 atm and the temperature is 15°C. The final volume of the gas is __________ L. Part B) A reaction is carried out that produces hydrogen gas. The gas is collected in an inverted beaker over water at 25 oC. The vapor pressure of water at 25 oC is 23.78 mmHg....
A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on...
A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on both sides of the plate where the bottom side absorbs a uniform radiative heat flux of 1542 W/m2. The plate is oriented parallel to the flow and the length along the flow direction is 60 cm. Consider the plate is negligibly thin and the width of the plate (perpendicular to the flow) is large, so that the problem can be considered as a 2D...
Air at 38.0°C and 99.0% relative humidity is to be cooled to 16.0°C and fed into...
Air at 38.0°C and 99.0% relative humidity is to be cooled to 16.0°C and fed into a plant area at a rate of 510.0 m3/min. You may assume that the air pressure is 1 atm in all stages of the process. Calculate the rate the water condenses in kg/min.
1.7 kg/s NH3 and 20 m3/s air at 25 oC and 1 atm are fed into...
1.7 kg/s NH3 and 20 m3/s air at 25 oC and 1 atm are fed into a reactor in which the ammonia is completely consumed. The product gas emerges at 300 oC. Calculate the rate at which heat must be transferred to or from the reactor, assuming operation at approximately 1 atm. You must show full systematic working. The standard heat of reaction for the oxidation of ammonia is given below: 4 NH3(g) + 5 O2(g) ? 4 NO(g) +...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT