In: Statistics and Probability
Price | Miles | Weight | Age |
13500 | 4995 | 1165 | 2 |
13750 | 5048 | 1160 | 2 |
13950 | 4874 | 1165 | 1 |
13950 | 4536 | 1165 | 1 |
13750 | 5300 | 1170 | 2 |
14800 | 4125 | 1165 | 1 |
13750 | 4895 | 1170 | 1 |
13950 | 4325 | 1165 | 2 |
13700 | 5000 | 1165 | 2 |
12500 | 8500 | 1170 | 3 |
11500 | 9578 | 1160 | 3 |
12400 | 5675 | 1165 | 2 |
11850 | 9857 | 1170 | 4 |
10900 | 10240 | 1165 | 4 |
11450 | 10253 | 1170 | 3 |
.Please use Excel if you can | ||||||||||||||
A. Estimate a regression model for "Price" = "Miles". | ||||||||||||||
B. Estimate a regression model for "Price" = "Age". | ||||||||||||||
C. If sales is the dependent variable, which of the two independent variables do you think explains sales better? Explain | ||||||||||||||
D. Estimate a Regreesion model for "Price" ="Miles" + "Age" +"Weight", and explain the model fit and the significant variables. |
A)
Regression Statistics | ||||||||
Multiple R | 0.944648 | |||||||
R Square | 0.89236 | |||||||
Adjusted R Square | 0.88408 | |||||||
Standard Error | 400.1421 | |||||||
Observations | 15 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 17255855 | 17255855 | 107.7725 | 1.16E-07 | |||
Residual | 13 | 2081478 | 160113.7 | |||||
Total | 14 | 19337333 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 16037.54 | 306.0658 | 52.399 | 1.64E-16 | 15376.33 | 16698.76 | 15376.33 | 16698.76 |
Miles | -0.46155 | 0.04446 | -10.3814 | 1.16E-07 | -0.5576 | -0.3655 | -0.5576 | -0.3655 |
B)
Regression Statistics | |
Multiple R | 0.877327 |
R Square | 0.769703 |
Adjusted R Square | 0.751988 |
Standard Error | 585.2898 |
Observations | 15 |
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 15283.33 | 371.4528 | 41.14475 | 3.72E-15 | 14480.86 | 16085.81 | 14480.86 | 16085.81 |
Age | -1016.67 | 154.2374 | -6.59157 | 1.74E-05 | -1349.88 | -683.457 | -1349.88 | -683.457 |
C)
Sales will depend on price and miles.
d)
Regression Statistics | |
Multiple R | 0.95175 |
R Square | 0.905828 |
Adjusted R Square | 0.880145 |
Standard Error | 406.8757 |
Observations | 15 |
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -23452.8 | 38452.79 | -0.60991 | 0.554311 | -108087 | 61181.26 | -108087 | 61181.26 |
Miles | -0.41405 | 0.104187 | -3.9741 | 0.002181 | -0.64337 | -0.18474 | -0.64337 | -0.18474 |
Weight | 33.89045 | 33.03599 | 1.025865 | 0.326986 | -38.8213 | 106.6022 | -38.8213 | 106.6022 |
Age | -151.708 | 244.3067 | -0.62097 | 0.547269 | -689.423 | 386.0077 | -689.423 | 386.0077 |
Please revert back in case of any doubt.
Please upvote. Thanks in advance.