Question

In: Chemistry

A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...

A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL.

Part A

Calculate the molality of the salt solution.

Part B

Calculate the mole fraction of salt in this solution.

Express the mole fraction to four significant figures.

Solutions

Expert Solution

mass of water = 999,3 x 0.9982

                       = 997.5 g

moles of water = 997.5 / 18 = 55.417 mol

moles of NaCl = 2.750×10−2 x 1

                       = 2.750×10−2

molality = moles / mass of solvent in kg

            = 2.750×10−2 / 0.9975

molality = 0.0276 m

Part B)

mole fraction of salt = moles of salt / total moles

                                = 2.750×10−2 / 2.750×10−2 + 55.417

                                = 4.960 x 10^-4


Related Solutions

A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Calculate the molality of the salt solution. XNaCl = 2.506 X 10-2 m Calculate the mole fraction of salt in this solution. XNaCl...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.2 mL . The density of water at 20.0∘C is 0.9982 g/mL. 1a) Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. 1b) Calculate the...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. A. Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. B. Calculate the...
A 2.700×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.700×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. Part B...
A 2.400×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...
A 2.400×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.0 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A: Calculate the molality of the glycerol solution. Part B: Calculate the mole fraction of glycerol in this solution. Part C:...
A 2.250×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...
A 2.250×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.0 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A:   Calculate the molality of the glycerol solution. Express your answer to four significant figures and include the appropriate units. Definitely...
A 2.100×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...
A 2.100×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.1 mL . The density of water at 20.0∘C is 0.9982 g/mL. a.) Calculate the molality of the glycerol solution. Express your answer to four significant figures and include the appropriate units. b.)Calculate the...
A solution of 2M NaCl in water is separated from pure water by a semipermeable membrane....
A solution of 2M NaCl in water is separated from pure water by a semipermeable membrane. Which of the following is true? A solution of 2M NaCl in water is separated from pure water by a semipermeable membrane. Which of the following is true? a)Nothing will happen because the system is at ΔG = 0. B)The crossing of NaCl is an endergonic process. C)Water will move from the 2M NaCl solution to the pure water compartment. D)NaCl will migrate (diffuse)...
Which one of these salts will form a basic solution on dissolving in water? A. NaCl...
Which one of these salts will form a basic solution on dissolving in water? A. NaCl B. KCN C. NaNO3 D. NH4NO3 E. FeCl3
A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of...
A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of the solution at 20.0∘C is 1.082 g/mL. Calculate the molarity of the salt solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT