Question

In: Chemistry

A 2.100×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...

A 2.100×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.1 mL . The density of water at 20.0∘C is 0.9982 g/mL.

a.) Calculate the molality of the glycerol solution. Express your answer to four significant figures and include the appropriate units.

b.)Calculate the mole fraction of glycerol in this solution. Express the mole fraction to four significant figures

c.)Calculate the concentration of the glycerol solution in percent by mass. Express your answer to four significant figures and include the appropriate units.

d.)Calculate the concentration of the glycerol solution in parts per million. Express your answer as an integer to four significant figures and include the appropriate units.

Solutions

Expert Solution


Related Solutions

A 2.400×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...
A 2.400×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.0 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A: Calculate the molality of the glycerol solution. Part B: Calculate the mole fraction of glycerol in this solution. Part C:...
A 2.250×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created...
A 2.250×10−2 M solution of glycerol (C3H8O3) in water is at 20.0∘C. The sample was created by dissolving a sample of C3H8O3 in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.0 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A:   Calculate the molality of the glycerol solution. Express your answer to four significant figures and include the appropriate units. Definitely...
A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Calculate the molality of the salt solution. XNaCl = 2.506 X 10-2 m Calculate the mole fraction of salt in this solution. XNaCl...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.2 mL . The density of water at 20.0∘C is 0.9982 g/mL. 1a) Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. 1b) Calculate the...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. A. Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. B. Calculate the...
A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...
A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Part B Calculate the mole fraction of salt in this solution. Express the mole fraction...
An aqueous solution of 0.0190g of a protein in 10.0 mL of water at 20.0 ̊C...
An aqueous solution of 0.0190g of a protein in 10.0 mL of water at 20.0 ̊C shows a 5.22 cm rise inthe apparatus shown in the figure. Assume the density of the solution to be 0.998g/mL, andthe density of mercury to be 13.6 g/cm3. What is the molar mass of the protein?
A 20.0 mL sample of 0.432 M HBr is titrated with a 0.314 M NaOH solution....
A 20.0 mL sample of 0.432 M HBr is titrated with a 0.314 M NaOH solution. The pH after the addition of 35.0 mL of NaOH is __________. A.0.04 B.1.37 C.12.53 D.12.63 E.13.33
A 20.0-mL sample of 0.150 M KOH is titrated with 0.125 M HClO4 solution. Calculate the...
A 20.0-mL sample of 0.150 M KOH is titrated with 0.125 M HClO4 solution. Calculate the pH after the following volumes of acid have been added. 22.5 mL of the acid
what is the density of a 50% (m/v) solution of glycerol
what is the density of a 50% (m/v) solution of glycerol
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT