Question

In: Chemistry

A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of...

A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of the solution at 20.0∘C is 1.082 g/mL.

Calculate the molarity of the salt solution.

Solutions

Expert Solution

Answer :

Molality m = # of moles of solute / 1 kg of solvent.

Mass of solute dissolved in 1 Kg solvent = molality x Molar mass of solute.

Molar mass of NaCl = 58.5 g and molality m = 0.380 m

Hence mass of NaCl dissolved in 1kg of solvent water = 0.380 x 58.5 = 22.23 g.

Hence total mass of 0.380 m NaCl solution = 22.23 g solute + 1000 g water = 1022.23 g = 1.02223 kg.

Density of NaCl solution = 1.082 g/mL

Using mass of NaCl solution and density let us calculate volume of the NaCl solution.

Volume = Mass /Density = 1022.23 / 1.082 = 944.76 mL = 0.94476 L

It means 22.23 g i.e. 0.380 moles of NaCl are disolved and diluted to 944.76 mL i.e. 0.94476 L.

Hence molarity ofNaCl is ,

Molarity = # of moles of solute / volume of solution in L

Molarity of NaCl = 0.380 / 0.94476 = 0.402 M

Molarity of 0.380 m NaCl solution at 20 oC is 0.402 M.

========================XXXXXXXXXXXXXXXXXXXXX===============


Related Solutions

A solution prepared by mixing 22.4 mL of 0.380 M NaCl and 22.4 mL of 0.380...
A solution prepared by mixing 22.4 mL of 0.380 M NaCl and 22.4 mL of 0.380 M KI was titrated with 0.190 M AgNO3 in a cell containing a silver indicator electrode and a saturated calomel reference electrode. (a) What is [Ag ] when 21.2 mL of 0.190 M AgNO3 have been added? Express your answer as x, where [Ag ] is a quotient having the form Ksp,AgI/x. (b) What is [Ag ] when 67.0 mL of 0.190 M AgNO3...
Assume that seawater is an aqueous solution at 3.50% NaCl. If the density of seawater is...
Assume that seawater is an aqueous solution at 3.50% NaCl. If the density of seawater is 1.025g /ml at 20 degrees Celcius, calculate your: a) molality b) molarity c) parts per million (ppm)
A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.500×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Calculate the molality of the salt solution. XNaCl = 2.506 X 10-2 m Calculate the mole fraction of salt in this solution. XNaCl...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.800×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.2 mL . The density of water at 20.0∘C is 0.9982 g/mL. 1a) Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. 1b) Calculate the...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.250×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. A. Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. B. Calculate the...
(a) 3.25 M NaCl solution (density of solution = 1.08 g/mL)
  Calculate the molality of each of the following aqueous solutions.   (a) 3.25 M NaCl solution (density of solution = 1.08 g/mL) m   (b) 51.4 percent by mass KBr solution m  
Calculate the molality of each of the following aqueous solutions: (a) 2.01 M NaCl (density of...
Calculate the molality of each of the following aqueous solutions: (a) 2.01 M NaCl (density of solution = 1.08 g/mL) m (b) 51.8 percent by mass KBr solution
An aqueous solution of 0.0190g of a protein in 10.0 mL of water at 20.0 ̊C...
An aqueous solution of 0.0190g of a protein in 10.0 mL of water at 20.0 ̊C shows a 5.22 cm rise inthe apparatus shown in the figure. Assume the density of the solution to be 0.998g/mL, andthe density of mercury to be 13.6 g/cm3. What is the molar mass of the protein?
An aqueous solution is prepared to be 0.243 M in sodium formate and 0.120 M in...
An aqueous solution is prepared to be 0.243 M in sodium formate and 0.120 M in benzoic acid. (1) Is this solution a buffer solution? (2) What is the pH of this solution? (3) If 0.124 moles of hydrobromic acid are added to one liter of this solution, what is the pH of the resulting solution? Ka value of benzoic acid = 6.3X10^-5
A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...
A 2.750×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Part B Calculate the mole fraction of salt in this solution. Express the mole fraction...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT