In: Chemistry
Consider the reaction:
CO(g)+H2O(g)⇌CO2(g)+H2(g)
K=0.118 at 4000 K
A reaction mixture initially contains a CO partial pressure of 1361
mbar and a H2O partial pressure of 1781 mbar at 4000 K.
Part A: Calculate the equilibrium partial pressure of CO in bar using three decimal places
Part B: Calculate the equilibrium partial pressure of H2O in bar using three decimal places.
Part C: Calculate the equilibrium partial pressure of CO2 in bar using three decimal places
Part D: Calculate the equilibrium partial pressure of H2 in bar using three decimal places
Initial pressure of CO = 1361 mbar = 1.361 bar
Initial pressure of H2O = 1781 mbar = 1.781 bar
ICE Table:
Equilibrium constant expression is
Kp = p(CO2)*p(H2)/p(CO)*p(H2O)
0.118 = (1*x)(1*x)/((1.361-1*x)(1.781-1*x))
0.118 = (1*x^2)/(2.424-3.142*x + 1*x^2)
0.286-0.3708*x + 0.118*x^2 = 1*x^2
0.286-0.3708*x-0.882*x^2 = 0
This is quadratic equation (ax^2+bx+c=0)
a = -0.882
b = -0.3708
c = 0.286
Roots can be found by
x = {-b + sqrt(b^2-4*a*c)}/2a
x = {-b - sqrt(b^2-4*a*c)}/2a
b^2-4*a*c = 1.147
roots are :
x = -0.8172 and x = 0.3968
since x can't be negative, the possible value of x is
x = 0.3968
At equilibrium:
p(CO) = 1.361 - x = 1.361 - 0.3968 = 0.964 bar
p(H2O) = 1.781 - x = 1.781 - 0.3968 = 1.38 bar
p(CO2) = x = 0.3968 bar
p(H2) = x = 0.3968 bar
A)
0.964 bar
B)
1.38 bar
C)
0.397 bar
D)
0.397 bar