Question

In: Chemistry

Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.135 M CO...

Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.135 M CO and 0.135 M H2O. What is the equilibrium concentration of [CO], [H2O], [CO2], and [H2]

Solutions

Expert Solution

Answer – We are given, reaction - CO(g)+H2O(g) <-----> CO2(g)+H2(g)

Kc = 102 , [CO] = 0.135 M, [H2O] = 0.135 M

We need to put the ICE chart

      CO(g)+H2O(g) <-----> CO2(g)+H2(g)

I    0.135      0.135            0            0

C     -x            -x             +x         +x

E 0.135-x   0.135-x         +x        +x

We know, Kc = [CO2(g)] [H2(g)] / [CO(g)] [H2O(g)]

102 = x *x / (0.135-x) (0.135-x)

So, 102[(0.135-x) (0.135-x)] = x2

102( x2-0.27x+0.0182) =x2

102x2 -27.54x + 1.86 = x2

101x2 -27.54x + 1.86 = 0

Using the quadratic equation

x = 0.123 M

so equilibrium concentration

[CO(g)] =0.135-x

              = 0.135-0.123

              = 0.012 M

[H2O(g)] =0.135-x

              = 0.135-0.123

              = 0.012 M

[CO2(g)] = x = 0.123 M

[H2(g)] = x = 0.123 M


Related Solutions

Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) K=0.118 at 4000 K A reaction mixture initially contains a CO partial...
Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) K=0.118 at 4000 K A reaction mixture initially contains a CO partial pressure of 1361 mbar and a H2O partial pressure of 1781 mbar at 4000 K. Part A: Calculate the equilibrium partial pressure of CO in bar using three decimal places Part B: Calculate the equilibrium partial pressure of H2O in bar using three decimal places. Part C: Calculate the equilibrium partial pressure of CO2 in bar using three decimal places Part D: Calculate the...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1336 torr and a H2O partial pressure of 1764 torr at 2000 K. Part A Calculate the equilibrium partial pressure of CO2. Part B Calculate the equilibrium partial pressure of H2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1390 torr and a H2O partial pressure of 1710 torr at 2000 K. Calculate the equilibrium partial pressure of CO2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1390 torr and a H2O partial pressure of 1770 torr at 2000 K. A) Calculate the equilibrium partial pressure of CO2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1346 torr and a H2O partial pressure of 1762 torr at 2000 K. A.) Calculate the equilibrium partial pressure of CO2. B.) Calculate the equilibrium partial pressure of H2
16.60 Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a...
16.60 Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1332 torr and a H2O partial pressure of 1772 torr at 2000 K . Part A: Calculate the equilibrium partial pressure of CO2 . Part B: Calculate the equilibrium partial pressure of H2 .
#14.60 Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a...
#14.60 Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1332 torr and a H2O partial pressure of 1756 torr at 2000 K. 1) Calculate the equilibrium partial pressure of CO2. 2) Calculate the equilibrium partial pressure of H2.
CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1360...
CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1360 torr and a H2O partial pressure of 1768 torr at 2000 K. Part A Calculate the equilibrium partial pressure of CO2 and H2 ? torr
Consider the following equilibrium: CO2(g) + H2(g)---CO(g) + H2O(g); Kc = 1.6 at 1260 K Suppose...
Consider the following equilibrium: CO2(g) + H2(g)---CO(g) + H2O(g); Kc = 1.6 at 1260 K Suppose 0.038 mol CO2 and 0.022 mol H2 are placed in a 1.50-L vessel at 1260 K. What is the equilibrium partial pressure of CO(g)? The answer is either 9.9 atm or 1.1 atm. But my question is WHY IS ONE CHOICE INCORRECT since I get both in my calculations.
For the following reaction, Kc = 255 at 1000 K. CO(g)+Cl2(g)⇌COCl2(g) A reaction mixture initially contains...
For the following reaction, Kc = 255 at 1000 K. CO(g)+Cl2(g)⇌COCl2(g) A reaction mixture initially contains a COconcentration of 0.1470 M and a Cl2concentration of 0.173 M at 1000 K A)What is the equilibrium concentration of COat 1000 K? B)What is the equilibrium concentration of Cl2 at 1000 K? C)What is the equilibrium concentration of COCl2 at 1000 K?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT