Question

In: Physics

Two blocks are free to slide along the frictionless wooden track shown below. The block of...

Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.07 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.3 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision.

Solutions

Expert Solution

ELASTIC COLLISION


m1 = 5.07 kg                                     m2 = 10.3 kg


speeds before collision


v1i = sqrt(2*g*h1) = sqrt(2*9.81*5) =9.9 m/s         v2i = -v1

speeds after collision


v1f =                                                 v2f = +


initial momentum before collision


Pi = m1*v1i + m2*v2i

after collision final momentum

Pf = m1*v1f + m2*v2f

from momentum conservation


total momentum is conserved

Pf = Pi


m1*v1i + m2*v2i = m1*v1f + m2*v2f .....(1)


from energy conservation


total kinetic energy before collision = total kinetic energy after collision


KEi = 0.5*m1*v1i^2 + 0.5*m2*v2i^2

KEf =   0.5*m1*v1f^2 + 0.5*m2*v2f^2


KEi = KEf


0.5*m1*v1i^2 + 0.5*m2*v2i^2 = 0.5*m1*v1f^2 + 0.5*m2*v2f^2 .....(2)

solving 1&2


we get


v1f = ((m1-m2)*v1i + (2*m2*v2i))/(m1+m2)


v2f = ((m2-m1)*v2i + (2*m1*v1i))/(m1+m2)

------------------------------

v1f = ((5.07 - 10.3)*9.9 + (2*10.3*0))/(5.07+10.3)


v1f = -3.37 m/s

maximum height to which m1 rises H = v1f^2/92*g)


H = 3.37^2/(2*9.81)


H = 0.58 m


Related Solutions

Two blocks are free to slide along a frictionless, wooden track. The track consists of a...
Two blocks are free to slide along a frictionless, wooden track. The track consists of a curve of height 4.91 m that falls to a straightaway. A smaller block weighing 4.91 kg is allowed to fall from the top the curve. It has a spring pointed forward embedded at the front. After reaching the straightaway, it collides with a larger block weighing 12 kg that is hard and flat at its rear. The two blocks rebound elastically. What is the...
2 blocks slide towards each other on a frictionless horizontal surface. Block A slides from left...
2 blocks slide towards each other on a frictionless horizontal surface. Block A slides from left to right at a speed of 3m/s. It's mass is 2kg. Block B slides from right to left at a speed of 5 m/s. It's mass is 1 kg. They stick together upon collision. 1. Find the change of momentum of block A. 2. Find the change in momentum of block B. 3. Find the change in kinetic energy of the 2 block system...
A block weighing 259 g slides along a frictionless track at a speed 6.1 cm/s. It...
A block weighing 259 g slides along a frictionless track at a speed 6.1 cm/s. It then attaches to a spring-bumper with an electromagnetic device so that the block attaches to the bumper. The bumper has a mass of 130 g, and the spring has a stiffness of 1540 kg/s2 and an equilibrium length of 10.6 cm. After the spring compresses and returns to its original length, the magnet turns off and the block launches off again, conserving energy. (a)...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at...
SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at a speed 8.9 cm/s. It then attaches to a spring-bumper with an electromagnetic device so that the block attaches to the bumper. The bumper has a mass of 115 g, and the spring has a stiffness of 1110 kg/s2 and an equilibrium length of 9.5 cm. After the spring compresses and returns to its original length, the magnet turns off and the block launches...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged in order by the 1kg block, then the 2kg block, and then the 3kg block; you push the 1kg block. a. Calculate the force exerted by the 3kg block on the 2kg block. b. Calculate the force exerted by the 2kg block on the 1kg block. For both parts show if you are using Newton's 2nd or 3rd Law and where.
A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure....
A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure. The spring is under-formed when the collar A is at the same elevation as point O. The collar is released from rest at y1 = 0.4 m. Determine the velocities of the collar as it first passes a) y2 = 0.0 m, and b) y3 = − 0.4m
A block of mass ? slides along a frictionless surface with a speed ? and collides...
A block of mass ? slides along a frictionless surface with a speed ? and collides with a stationary block of mass 2? . After the collision the block of mass ? rebounds with a speed of ?⁄2. What is the greatest speed ???? that the block of mass 2? can have after the collision?
A wooden block A of mass m1 slides on a frictionless table when pulled using a...
A wooden block A of mass m1 slides on a frictionless table when pulled using a massless string and pulley array by a hanging box B of mass m2, as shown in the figure. What is the acceleration of block A as it slides on the frictionless table? Hint: Think carefully about the acceleration constraint.
A.) A small block slides down a frictionless track whose shape is described by y =...
A.) A small block slides down a frictionless track whose shape is described by y = (x^2) /d for x<0 and by y = -(x^2)/d for x>0. The value of d is 3.27 m, and x and y are measured in meters as usual. Suppose the block starts from rest on the track, at x = -1.07 m. What will the block s speed be when it reaches x = 0? B.) Same type of track as in the previous...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT