Question

In: Physics

Two blocks are free to slide along the frictionless wooden track shown below. The block of...

Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.07 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.3 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision.

Solutions

Expert Solution

ELASTIC COLLISION


m1 = 5.07 kg                                     m2 = 10.3 kg


speeds before collision


v1i = sqrt(2*g*h1) = sqrt(2*9.81*5) =9.9 m/s         v2i = -v1

speeds after collision


v1f =                                                 v2f = +


initial momentum before collision


Pi = m1*v1i + m2*v2i

after collision final momentum

Pf = m1*v1f + m2*v2f

from momentum conservation


total momentum is conserved

Pf = Pi


m1*v1i + m2*v2i = m1*v1f + m2*v2f .....(1)


from energy conservation


total kinetic energy before collision = total kinetic energy after collision


KEi = 0.5*m1*v1i^2 + 0.5*m2*v2i^2

KEf =   0.5*m1*v1f^2 + 0.5*m2*v2f^2


KEi = KEf


0.5*m1*v1i^2 + 0.5*m2*v2i^2 = 0.5*m1*v1f^2 + 0.5*m2*v2f^2 .....(2)

solving 1&2


we get


v1f = ((m1-m2)*v1i + (2*m2*v2i))/(m1+m2)


v2f = ((m2-m1)*v2i + (2*m1*v1i))/(m1+m2)

------------------------------

v1f = ((5.07 - 10.3)*9.9 + (2*10.3*0))/(5.07+10.3)


v1f = -3.37 m/s

maximum height to which m1 rises H = v1f^2/92*g)


H = 3.37^2/(2*9.81)


H = 0.58 m


Related Solutions

Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at...
SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at a speed 8.9 cm/s. It then attaches to a spring-bumper with an electromagnetic device so that the block attaches to the bumper. The bumper has a mass of 115 g, and the spring has a stiffness of 1110 kg/s2 and an equilibrium length of 9.5 cm. After the spring compresses and returns to its original length, the magnet turns off and the block launches...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged in order by the 1kg block, then the 2kg block, and then the 3kg block; you push the 1kg block. a. Calculate the force exerted by the 3kg block on the 2kg block. b. Calculate the force exerted by the 2kg block on the 1kg block. For both parts show if you are using Newton's 2nd or 3rd Law and where.
A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure....
A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure. The spring is under-formed when the collar A is at the same elevation as point O. The collar is released from rest at y1 = 0.4 m. Determine the velocities of the collar as it first passes a) y2 = 0.0 m, and b) y3 = − 0.4m
A block of mass ? slides along a frictionless surface with a speed ? and collides...
A block of mass ? slides along a frictionless surface with a speed ? and collides with a stationary block of mass 2? . After the collision the block of mass ? rebounds with a speed of ?⁄2. What is the greatest speed ???? that the block of mass 2? can have after the collision?
A wooden block A of mass m1 slides on a frictionless table when pulled using a...
A wooden block A of mass m1 slides on a frictionless table when pulled using a massless string and pulley array by a hanging box B of mass m2, as shown in the figure. What is the acceleration of block A as it slides on the frictionless table? Hint: Think carefully about the acceleration constraint.
A.) A small block slides down a frictionless track whose shape is described by y =...
A.) A small block slides down a frictionless track whose shape is described by y = (x^2) /d for x<0 and by y = -(x^2)/d for x>0. The value of d is 3.27 m, and x and y are measured in meters as usual. Suppose the block starts from rest on the track, at x = -1.07 m. What will the block s speed be when it reaches x = 0? B.) Same type of track as in the previous...
A block of mass m=2kg can slide down a frictionless 53 degree incline but is connected...
A block of mass m=2kg can slide down a frictionless 53 degree incline but is connected to a pully of mass M=4kg and radius R=0.5m. The pulley may be treated as a uniform disk. Find: a) The angular acceleration of the pulley b) The speed of the block after it has slid 1m starting from rest
A system composed of blocks, a light frictionless pulley, and connecting ropes is shown in the figure.
A system composed of blocks, a light frictionless pulley, and connecting ropes is shown in the figure. The coefficient of friction between the both blocks and the incline is 0.12. The 9.0-kg block accelerates downward when the system is released from rest. What is the acceleration of the system and the tension in the rope connecting the 6.0-kg block and the 4.0-kg block?
1) Two identical blocks of mass M slide on opposite frictionless tracks obeying y(x) = D((e^-x/D)-1)...
1) Two identical blocks of mass M slide on opposite frictionless tracks obeying y(x) = D((e^-x/D)-1) and y(x) = D((e^x/D)-1) repectively. There is gravity g. A spring of equilibrium length zero and spring constant k is stretched between the masses, initially separated by 2D. Both blocks are released from rest simultaneously and begin to slide down their planes, reducing the stretch of the spring between them. a) Find the maximum value of k that will keep the blocks from leaving...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT