Question

In: Physics

A block weighing 259 g slides along a frictionless track at a speed 6.1 cm/s. It...

A block weighing 259 g slides along a frictionless track at a speed 6.1 cm/s. It then attaches to a spring-bumper with an electromagnetic device so that the block attaches to the bumper. The bumper has a mass of 130 g, and the spring has a stiffness of 1540 kg/s2 and an equilibrium length of 10.6 cm. After the spring compresses and returns to its original length, the magnet turns off and the block launches off again, conserving energy.


(a) How fast is the block just after it attaches to the paddle?


(b) What is the maximum compression of the spring before the block turns around?


(b) How fast is the block moving after it launches off the paddle?

Solutions

Expert Solution

Stiffness of spring should be in g/s2 instead of given in kg/s2, to have some meaningful compression.


Related Solutions

SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at...
SLIDING OSCILLATIONS 3 My Notes A block weighing 273 g slides along a frictionless track at a speed 8.9 cm/s. It then attaches to a spring-bumper with an electromagnetic device so that the block attaches to the bumper. The bumper has a mass of 115 g, and the spring has a stiffness of 1110 kg/s2 and an equilibrium length of 9.5 cm. After the spring compresses and returns to its original length, the magnet turns off and the block launches...
A block of mass ? slides along a frictionless surface with a speed ? and collides...
A block of mass ? slides along a frictionless surface with a speed ? and collides with a stationary block of mass 2? . After the collision the block of mass ? rebounds with a speed of ?⁄2. What is the greatest speed ???? that the block of mass 2? can have after the collision?
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s....
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s. The block encounters an unstretched spring with a force constant of 231 N/m. Before the block comes to rest, the spring is compressed by 9.17 cm. 1) Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do you expect the maximum compression of the spring to change? Explain. 2)...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 980 N/m . The block comes to rest after compressing the spring 4.15 cm. A.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B.Find the spring potential energy, U, the kinetic energy of the block, K,...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 516 N/m . The block comes to rest after compressing the spring 4.15 cm. A. Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B. Find the spring potential energy, U, the kinetic energy of the...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 660 N/m. The block comes to rest after compressing the spring 4.18 cm. Calculate the spring potential energy for a compression of 0 cm. Calculate the kinetic energy of the block for a compression of 0 cm. Calculate the total mechanical energy of the system for a compression of 0 cm. Calculate the spring potential...
A 10 g marble slides to the left at a speed of 0.4 m/s along a...
A 10 g marble slides to the left at a speed of 0.4 m/s along a frictionless surface. It has a head-on, elastic collision with a larger, 30 g marble sliding to the right at 0.2 m/s. Since the collision is head-on, all motion is along the x-axis. a. Find the total kinetic energy AND the total momentum before the collision b. The marbles bounce off each other elastically. Each marble has a different velocity after the collision. The lighter...
A.) A small block slides down a frictionless track whose shape is described by y =...
A.) A small block slides down a frictionless track whose shape is described by y = (x^2) /d for x<0 and by y = -(x^2)/d for x>0. The value of d is 3.27 m, and x and y are measured in meters as usual. Suppose the block starts from rest on the track, at x = -1.07 m. What will the block s speed be when it reaches x = 0? B.) Same type of track as in the previous...
Two blocks are free to slide along the frictionless wooden track shown below. The block of...
Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.07 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.3 kg, initially at rest. The...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.2 m and then collides with stationary block 2, which has mass m2 = 4m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.55 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT