Question

In: Computer Science

a b c d f 0 0 0 0 0 0 0 0 1 0 0...

a

b

c

d

f

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

0

0

0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

1

1

1

1

0

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

0

a)Implement f using one 4-to-16 decoder and a minimal number of gates.

b) Implement f using two 2-to-8 decoders, one 4-to-1 multiplexer, and a minimal number of gates.

Solutions

Expert Solution

Truth Table:

S.NO

    a

    b

    c

    d

    f

    0

    0

    0

    0

    0

    0

    1

    0

    0

    0

    1

    0

    2

    0

    0

    1

    0

    0

    3

    0

    0

    1

    1

    0

    4

    0

    1

    0

    0

    1

    5

    0

    1

    0

    1

    1

    6

    0

    1

    1

    0

    1

    7

    0

    1

    1

    1

    1

    8

    1

    0

    0

    0

    0

    9

    1

    0

    0

    1

    1

    10

    1

    0

    1

    0

    1

    11

    1

    0

    1

    1

    1

    12

    1

    1

    0

    0

    0

    13

    1

    1

    0

    1

    1

    14

    1

    1

    1

    0

    1

    15

    1

    1

    1

    1

    0

a) From the above truth table

Given Function is

f (a, b, c, d) =m (4, 5, 6, 7, 9, 10, 11, 13, 14)

Decoder: Definition: A decoder is a combinational circuit that has n data inputs and 2n Outputs.In given data it has 4 data inputs so 24 Outputs

24 Outputs = 2x2x2x2 = 16 Outputs

Using 4-to-16 Decoders:

Given Function is

f (a, b, c, d) =m (4, 5, 6, 7, 9, 10, 11, 13, 14)

Explanation:

Here in the above function we have min terms m4,m5,m6,m7,m9, m10,m11,m13 & m14. So combine output contains these min terms & Joined to OR gate.

b) Decoder: Definition: A decoder is a combinational circuit that has n data inputs and 2n Outputs.In given data it has 3 data inputs so 23 Outputs

23 Outputs = 2x2x2 = 8 Outputs

Using 3-to-8 Decoders:

Given Function is

f (a, b, c, d) =m (4, 5, 6, 7, 9, 10, 11, 13, 14)

Using 3 to 8 Decoder:

Explanation:

Here in the above function we have min terms m4,m5,m6,m7,m9, m10,m11,m13 & m14. So combine output contains these min terms & Joined to OR gate.

Using 4-to-1 Multiplexer:

Explanation:

Here in the above function we have min terms m4,m5,m6,m7,m9, m10,m11,m13 & m14. So combine output contains these min terms & Joined to OR gate.



Related Solutions

DATA: Grades A- 10     B- 2     C- 1 D- 0   F- 2 Q23. a)...
DATA: Grades A- 10     B- 2     C- 1 D- 0   F- 2 Q23. a) If a committee with 2 student members is to be formed, what is the probability of forming a committee with one A grade and one F grade student? Q24. If a committee with 3 student members is to be formed, what is the probability of forming a committee with two A grade and one B grade student? Q25.If the records show that, the probability...
Assume that: float a, b, c, d, f; and variables b, c, d, f are initialized....
Assume that: float a, b, c, d, f; and variables b, c, d, f are initialized. Write a line of c++ code that calculates the formula below and stores the result to the variable a:
1.            Determine whether the function f from { a, b, c, d } to {a,...
1.            Determine whether the function f from { a, b, c, d } to {a, b, c, d, e} is injective (one-to-one), surjective (onto) and/or bijective (one-to- one correspondence) : f(a) = a,            f(b) = c,            f(c) = b, f(d) = e a. Is this function injective?              . surjective?              . bijective?              . If your answer is no for any of the above, explain:             b. Is there an inverse for this function?              . c. Is the composition f...
Given a Boolean function: f(a,b,c,d) = m(1,6,7,10,12)+dc(3,4,9,15). i) Design a circuit for implementing f(a,b,c,d) with ONE...
Given a Boolean function: f(a,b,c,d) = m(1,6,7,10,12)+dc(3,4,9,15). i) Design a circuit for implementing f(a,b,c,d) with ONE 4-to-1 MUX and other basic logic gates. USE a and b as select inputs. ii) Draw the circuit. iii) Write the VHDL code for a 4-to-1 MUX, named “mux_4to1”, with input: a, b, c, d, s0, s1; and output: z. iv) Write the complete VHDL code for the above circuit in part (iii), named “Boolean_MUX”.
Let f(x)=3x^3−7 A) List the critical point(s) of f= B)f′(x)>0f′(x)>0 for x∈= C)f′(x)<0f′(x)<0 for x∈= D)The...
Let f(x)=3x^3−7 A) List the critical point(s) of f= B)f′(x)>0f′(x)>0 for x∈= C)f′(x)<0f′(x)<0 for x∈= D)The local maxima of ff occur at x= E)=The local minima of ff occur at x= nstructions: For part (1), give your answer as a single value, or a list of values, or the word none . For parts (2) and (3), give your answer as an interval or a union of intervals, such as (0,1) or (-inf, 2) U (3,4), or the word none....
A thumbs up will be given: Table 1 t A B C D 0       (14,900,000)...
A thumbs up will be given: Table 1 t A B C D 0       (14,900,000)       (17,900,000)       (16,600,000)        (19,700,000) 1          4,980,000          5,990,000          3,850,000           6,400,000 2          4,980,000          6,210,000          4,990,000           5,880,000 3          4,510,000          6,250,000          6,860,000           6,800,000 4          4,510,000          4,700,000          4,990,000           6,650,000 Risk High Average Low Average Table 1 shows the expected after-tax operating cash flows for each project. All projects are expected to...
(a) (f ∘ g)(3) (b) g(f(2)) (c) g(f(5)) (d) (f ∘ g)(−3) (e) (g ∘ f)(−1) (f) f(g(−1))
(a)    (f ∘ g)(3) (b)    g(f(2)) (c)    g(f(5)) (d)    (f ∘ g)(−3) (e)    (g ∘ f)(−1) (f)    f(g(−1))  
Seven people (A,B,C,D,E, F, and G) are seated in a row. Suppose A,B, and C are...
Seven people (A,B,C,D,E, F, and G) are seated in a row. Suppose A,B, and C are freshmen, D and E are sophomores and F and G are juniors. How many arrangements are possible if: (a) D and F must sit together? (b) A and C must not sit together? (c) All freshmen must sit together? (d) All freshmen must sit together, all sophomores must sit together, and all juniors must sit together? (e) Exactly two people sit between A and...
Find the cubic equation. F(x)=ax^3+bx^2+cx+d F(-1)=3 F(1)=1 F(2)=6 F(3)=7 What is the value of a,b,c,d
Find the cubic equation. F(x)=ax^3+bx^2+cx+d F(-1)=3 F(1)=1 F(2)=6 F(3)=7 What is the value of a,b,c,d
1. ¬B∨(G↔J), H→(B&C) ∴(H&J)→G 2. A∨B, C↔¬(B∨D) ∴C→A 3. (A&B) ↔ (F→G), (A&F) & B∴(G→R)→R 4....
1. ¬B∨(G↔J), H→(B&C) ∴(H&J)→G 2. A∨B, C↔¬(B∨D) ∴C→A 3. (A&B) ↔ (F→G), (A&F) & B∴(G→R)→R 4. T→¬B, T→¬D ∴ T→¬(B∨D) 5. ¬(M∨¬S), S→(R→M) ∴A → (¬R∨T) 6. (F&G) → I, (I∨J) → K ∴F→(G→K) 7. ¬U, O→G, ¬(O∨G) →U ∴G Prove that the arguments are valid by constructing a dedication using the rules MP, MT, DN, Conj, Simp, CS, Disj, DS, DM, CP, HS, BE, and DL. Use CP if needed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT