Question

In: Statistics and Probability

Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n....

Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n. Derive the distribution for the summation of Xi from 1 to n. (Without using MGF)

Solutions

Expert Solution


Related Solutions

Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f....
Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f. ?(?) = ???−1, 0 ≤ ? ≤ 1 . c) Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1⁄(?(? − 1)).) d)...
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1...
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1 . c. Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1 / (?(? − 1)). d. Is the estimator you found in...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Suppose Y1,Y2, .. ,Y8 are independent and identically distributed as Poisson random variables with mean lambda....
Suppose Y1,Y2, .. ,Y8 are independent and identically distributed as Poisson random variables with mean lambda. a) Derive the most powerful test for testing Ho: lambda = 2, Ha: lambda = 3. Carefully show all work involved in the derivation. i) Give the form of the test. (In other words, for what general values of Y1,Y2, .. ,Y8 will Ho be rejected?) ii) Describe the rejection region as carefully as possible if alpha <= .05 (and is as close as...
Let X and Y be two independent and identically distributed random variables with expected value 1...
Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(|X + Y − 2| ≥ 1). 5 MARKS (ii) Now suppose that X and Y are independent and identically distributed N(1, 2.56) random variables. What is P(|X + Y − 2| ≥ 1) exactly? Briefly, state your reasoning. 2 MARKS (iii) Why is the upper bound you obtained in Part (i) so different...
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a...
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W =  Y1+  Y2+ Y3+ Y4. Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W = 1/8 Y1+ 1/3 Y2+ 1/6 Y3+ 3/8 Y4. This is an example of a weighted average of the Yi. Show...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a)...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a) Compute P{max(X1, X2,..., Xn) ≤ x} and find the pdf of Y = max(X1, X2,..., Xn). b) Compute P{min(X1, X2,..., Xn) ≤ x} and find the pdf of Z = min(X1, X2,..., Xn). c) Compute E(Y) and E(Z).
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2? (Note: The formulas we did were for the continuous case, so they don’t directly apply here, but you...
A: Suppose two random variables X and Y are independent and identically distributed as standard normal....
A: Suppose two random variables X and Y are independent and identically distributed as standard normal. Specify the joint probability density function f(x, y) of X and Y. Next, suppose two random variables X and Y are independent and identically distributed as Bernoulli with parameter 1 2 . Specify the joint probability mass function f(x, y) of X and Y. B: Consider a time series realization X = [10, 15, 23, 20, 19] with a length of five-periods. Compute the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT