Question

In: Statistics and Probability

u1-u2 = 10 m = 25 sd = 15.22 mean = 22.32 n = 25 Sd...

u1-u2 = 10

m = 25

sd = 15.22

mean = 22.32

n = 25

Sd = 17.35

mean = 14.75

can u do the hypothesis test by using the t test

thanks

Solutions

Expert Solution

Ho :   µ1 - µ2 =   10                  
Ha :   µ1-µ2 ╪   10                  
                          
Level of Significance ,    α =    0.05                  
                          
Sample #1   ---->   1                  
mean of sample 1,    x̅1=   22.320                  
standard deviation of sample 1,   s1 =    15.2200                  
size of sample 1,    n1=   25                  
                          
Sample #2   ---->   2                  
mean of sample 2,    x̅2=   14.750                  
standard deviation of sample 2,   s2 =    17.3500                  
size of sample 2,    n2=   25                  
                          
difference in sample means =    x̅1-x̅2 =    22.3200   -   14.8   =   7.57  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    16.3198                  
std error , SE =    Sp*√(1/n1+1/n2) =    4.6159                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   7.5700   -   10   ) /    4.62   =   -0.526
                          

Degree of freedom, DF=   n1+n2-2 =    48                  
  
p-value =        0.6010   (excel function: =T.DIST.2T(t stat,df) )              
Conclusion:     p-value>α , Do not reject null hypothesis                      


Related Solutions

u1-u2 = 10 m = 25 Sd = 17.35 mean = 14.75 n = 25 sd...
u1-u2 = 10 m = 25 Sd = 17.35 mean = 14.75 n = 25 sd = 15.22 mean = 22.32 can u do the hypothesis test by using the t test thanks
Let B = {u1,u2} where u1 = 1 and u2 = 0    0 1 and...
Let B = {u1,u2} where u1 = 1 and u2 = 0    0 1 and B' ={ v1 v2] where v1= 2 v2= -3 1 4 be bases for R2 find 1.the transition matrix from B′ to B 2. the transition matrix from B to B′ 3.[z]B if z = (3, −5) 4.[z]B′ by using a transition matrix 5. [z]B′ directly, that is, do not use a transition matrix
Consider a systematic (7,4) code whose parity-check equations are: v0=u0+u1+u2 v1=u1+u2+u3 v2=u0+u2+u3 where u0 u1 u2...
Consider a systematic (7,4) code whose parity-check equations are: v0=u0+u1+u2 v1=u1+u2+u3 v2=u0+u2+u3 where u0 u1 u2 and u3 are message digits and v0 v1 and v2 are parity-check digits. a)      Find the generator and parity-check matrices for this code.        b)     Construct an encoder circuit for the code.                                   c)      Find the codewords corresponding to the binary messages (1001), (1011), and (1110).                                                                                                                  
1. Show that if λ1 and λ2 are different eigenvalues of A and u1 and u2...
1. Show that if λ1 and λ2 are different eigenvalues of A and u1 and u2 are associated eigenvectors, then u1 and u2 are independent. More generally, show that if λ1, ..., λk are distinct eigenvalues of A and ui is an eigenvector associated to λi for i=1, ..., k, then u1, ..., uk are independent. 2. Show that for each eigenvalue λ, the set E(λ) = {u LaTeX: \in∈Rn: u is an eigenvector associated to λ} is a subspace...
The bull and alternate hypothesis are: Ho:u1<u2 H1:u1>u2 A random sample of 20 items from the...
The bull and alternate hypothesis are: Ho:u1<u2 H1:u1>u2 A random sample of 20 items from the first population showed a mean of 100 and a standard deviation of 15. A sample of 16 items for the second population showed a mean of 94 and a standard deviation of 8. use the 0.5 significant level.
1)Test hypothesis? 2)Do we accept or Reject? H0: U1-U2=0 H1: U1-U2>0 X1: 501051 S1: 4000.64 X2:...
1)Test hypothesis? 2)Do we accept or Reject? H0: U1-U2=0 H1: U1-U2>0 X1: 501051 S1: 4000.64 X2: 52299.17 S2: 4000.01 N1: 2495 N2:2498
      With reference to equations (4.2) and (4.3), let Z1 = U1 and Z2 = −U2...
      With reference to equations (4.2) and (4.3), let Z1 = U1 and Z2 = −U2 be independent, standard normal variables. Consider the polar coordinates of the point (Z1, Z2), that is, A2 = Z2 + Z2 and   φ = tan−1(Z2/Z1). 1         2 (a)    Find the joint density of A2 and φ, and from the result, conclude that A2 and φ are independent random variables, where A2 is a chi- squared random variable with 2 df, and φ is uniformly distributed...
the preferences of two individuals are represented by the following equations: U1 = X1Y1 and U2...
the preferences of two individuals are represented by the following equations: U1 = X1Y1 and U2 = X2Y2; where U1 denotes the utility of person 1; X1 and Y1 denote this person's consumption of goods X and Y, respectively; while U2, X2 and Y2 stand for the corresponding variables of person 2. Person 1 is endowed with 2 units of X and 12 units of Y, whereas person 2 is endowed with 4 units of X and 6 units of...
Construct a 95% confidence interval for u1 - u2 using the data presented in the table...
Construct a 95% confidence interval for u1 - u2 using the data presented in the table below: Flight Control 8.59 8.64 7.43 7.21 8.65 6.99 8.40 9.66 6.87 7.89 9.29 6.85 7.62 7.44 8.55 8.70 7.00 8.80 9.30 8.03 7.33 8.58 9.88 9.94 6.39 7.54 7.14 9.14 Let Ho be the null hypothesis that the vote is independent of age (that is there is no age gap in the vote). Test the null hypothesis at the x=0.10 significance level.
1) A) Write v as a linear combination of u1, u2, and u3, if possible. (Enter...
1) A) Write v as a linear combination of u1, u2, and u3, if possible. (Enter your answer in terms of u1, u2, and u3. If not possible, enter IMPOSSIBLE.) v = (−1, 7, 2), u1 = (2, 1, 5), u2 = (2, −3, 1), u3 = (−2, 3, −1) B) Write v as a linear combination of u and w, if possible, where u = (1, 3) and w = (2, −1). (Enter your answer in terms of u...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT