Question

In: Statistics and Probability

The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...

The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 22 and a sample standard deviation of 3.9. A random sample of 9 observations from another population revealed a sample mean of 27 and a sample standard deviation of 4.1. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should be indicated by a minus sign. Round your answers to 3 decimal places.) The decision rule is to reject HO if T< or t> . b) Compute the pooled estimate of the population variance. (Round your answer to 3 decimal places.) Pooled estimate of the population variance=? Compute the test statistic. (Negative amount should be indicated by a minus sign. Round your answer to 3 decimal places.) Test Statistic=?

Solutions

Expert Solution

Given that,

Null and Alternative Hypotheses:-

[ Where Population mean for Adjuster 1 and Population mean for Adjuster 2 ]

Also given that,

Sample Number of sample Mean SD
Sample 1 9 22 3.9
Sample 2 9 27 4.1

Now we want to test at the 0.01 significance level, is there a difference between the population means.

For this test our appropriate test statistic is given by,

[ Where,

Number of random sample for sample 1 = 9  ,   Number of random sample for sample 2 = 9

Sample Mean for sample 1 = 22 ,   Sample Mean for sample 2 = 27

Sample Standard Deviation for sample 1 = 3.9 ,       Sample Standard Deviation for sample 2 = 4.1

]

Decision rule:-

[ Value are getting from t-distribution probability table with corresponding , DF =16 and two tailed probability and round to three decimal places ]

Answer:- Since the test is two tailed test so, we reject the null hypothesis at level if we get,

or  

Pooled estimate of the population variance:-

Answer:- So we get, Pooled estimate of the population variance = 16.01

Value of the test statistic:- ( putting the value of , , , , )

[ Round to three decimal places ]

Answer:- Value of test statistic =

Decision:-

Here we get, , i.e. and

Result:- We do not reject the null hypothesis at level

Conclusion:- From the above testing result we can conclude that, at the 0.01 significance level there is not a significant difference between the two population means​​​​​​​.


Related Solutions

The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 4.6. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 3.6. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 9 observations from another population revealed a sample mean of 30 and a sample standard deviation of 3.5. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 1.1. A random sample of 4 observations from another population revealed a sample mean of 24 and a sample standard deviation of 1.3. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from Population 1 revealed a sample mean of 21 and sample deviation of 5. A random sample of 4 observations from Population 2 revealed a sample mean of 22 and sample standard deviation of 5.1. The underlying population standard deviations are unknown but are assumed to be equal. At the .05 significance level, is there a difference between...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 27 and a sample standard deviation of 3.6. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 26 items from the first population showed a mean of 114 and a standard deviation of 9. A sample of 15 items for the second population showed a mean of 99 and a standard deviation of 7. Assume the sample populations do not have equal standard deviations. a. Find the degrees of freedom for unequal variance test. (Round down your answer...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 24 and a sample standard deviation of 3.7. A random sample of 6 observations from another population revealed a sample mean of 28 and a sample standard deviation of 4.6. At the 0.01 significance level, is there a difference between the population means? a. State the decision rule. (Negative values...
The null and alternate hypotheses are:    H0 : μ1 = μ2 H1 : μ1 ≠...
The null and alternate hypotheses are:    H0 : μ1 = μ2 H1 : μ1 ≠ μ2    A random sample of 9 observations from Population 1 revealed a sample mean of 23 and sample deviation of 5. A random sample of 7 observations from Population 2 revealed a sample mean of 25 and sample standard deviation of 3.8. The underlying population standard deviations are unknown but are assumed to be equal. At the .05 significance level, is there a...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 27 items from the first population showed a mean of 106 and a standard deviation of 13. A sample of 14 items for the second population showed a mean of 102 and a standard deviation of 6. Use the 0.05 significant level. Find the degrees of freedom for unequal variance test. (Round down your answer to the nearest whole number.) State the...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 22 items from the first population showed a mean of 113 and a standard deviation of 12. A sample of 16 items for the second population showed a mean of 99 and a standard deviation of 6. Use the 0.01 significant level. Find the degrees of freedom for unequal variance test. (Round down your answer to the nearest whole number.) State the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT