Question

In: Chemistry

For all of the following questions 20.00 mL of 0.195 M HBr is titrated with 0.200...

For all of the following questions 20.00 mL of 0.195 M HBr is titrated with 0.200 M KOH.
Region 1: Initial pH: Before any titrant is added to our starting material
What is the concentration of H+ at this point in the titration?
M

What is the pH based on this H+ ion concentration?


Region 2: Before the Equivalence Point 5.68 mL of the 0.200 M KOH has been added to the starting material.
Complete the BCA table below at this point in the titration. (Be sure to use moles)
HBr (aq)   KOH (aq)   ?   H2O (l)   KBr (aq)
B               NA  
C               NA  
A               NA  
From the moles of HBr left after the reaction with KOH what will the pH be at this point in the titration?

Region 3: Equivalence Point
What volume of the titrant has been added to the starting material at the equivalence point for this titration?
mL

At the equivalence point an equal number of moles of OH- and H+ have reacted, producing a solution of water and salt. What affects the pH at this point for a strong-acid/strong-base titration?
   The acidity of the salt cation
   The basicity of the salt anion
   The auto-ionization of water
   None of these

Region 4: After the Equivalence Point 31.31 mL of the 0.200 M KOH has been added to the starting material
Complete the BCA table below at this point in the titration. (Use moles)
HBr (aq)   KOH (aq)   ?   H2O (l)   KBr (aq)
B               NA  
C               NA  
A               NA  
From the moles of KOH remaining after the reaction with HBr what is the pOH at this point in the titration?


Calculate the pH of the solution from the pOH found in the previous step

Solutions

Expert Solution

HBr + KOH --> NaBr + H2O

Region 1, [H+] = 0.195 M

pH = -log(0.195) = 0.71

Region 2, KOH added = 0.2 M x 5.68 ml = 1.14 mmol

moles HBr (initial) = 0.195 M x 20 ml = 3.90 mmol

      HBr + KOH --> H2O + KBr

I      3.90     -             -          -

C    -1.14    -            1.14     1.14

E     2.76    -             1.14     1.14

pH = -log(2.76/25.68 ml) = 0.97

Region 3, Equivalence

Volume KOH added = 3.90 mmol/0.20 M = 19.5 ml

pH = 7

The pH is dependent upon,

The auto-ionization of H2O

Region 4, 31.31 ml KOh added

excess [OH-] = (31.31 - 19.5) ml x 0.2 M/51.31 ml = 0.046 M

[H+] = 1 x 10^-14/0.046 = 2.2 x 10^-13 M

pH = -log(2.2 x 10^-13) = 12.66


Related Solutions

A 30.00 mL sample of 0.200 M HBr was titrated with 0.160 M KOH. a. What...
A 30.00 mL sample of 0.200 M HBr was titrated with 0.160 M KOH. a. What is the initial pH of the sample? b. What is the equivalence volume? c. What is the pH after 19.16 mL of KOH is added?
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M...
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M solution of NaOH in a constant pressure calorimeter. The temperature increases from 23.00 °C to 24.37 °C. Assume that the specific heat of the solution is the same as that of pure water (4.18 J/(g•°C)) and that the density is the same as pure water (1.00 g/mL). Calculate ΔH per mole of reaction for the below chemical reaction. HBr (aq) + NaOH (aq) →...
A 20.00 mL sample of 0.120 M NaOH was titrated with 52.00 mL of 0.175 M...
A 20.00 mL sample of 0.120 M NaOH was titrated with 52.00 mL of 0.175 M HNO3.             Calculate the [H+], [OH-], pH, and pOH for the resulting solution.   
A 40.00 mL aliquot of 0.100 M NH3 is titrated with 20.00 mL of 0.0700 M...
A 40.00 mL aliquot of 0.100 M NH3 is titrated with 20.00 mL of 0.0700 M HCl. Calculate the pH. Kb = 1.76 x 10−5
Part A A 50.0-mL sample of 0.200 M sodium hydroxide is titrated with 0.200 M nitric...
Part A A 50.0-mL sample of 0.200 M sodium hydroxide is titrated with 0.200 M nitric acid. Calculate the pH of the solution, after you add a total of 51.9 mL 0.200 M HNO3. Express your answer using two decimal places. Part B A 39.0 mL sample of 0.146 M HNO2 is titrated with 0.300 M KOH. (Ka for HNO2 is 4.57×10−4.) Determine the pH at the equivalence point for the titration of HNO2 and KOH .
Consider the titration of 20.00 mL of 0.100 M HBr with 0.150 M KOH at 25...
Consider the titration of 20.00 mL of 0.100 M HBr with 0.150 M KOH at 25 °C. What would be the pH of the solution when 20.00 mL of KOH have been added?
Consider the following 50.00 mL of 0.300 M acetic acid (HC2H3O2) was titrated with 0.200 M...
Consider the following 50.00 mL of 0.300 M acetic acid (HC2H3O2) was titrated with 0.200 M potassium hydroxide (KOH). HC2H3O2 + KOH H2O + C2H3O2-K+ A. Calculate the pH of the solution when 20.00 mL of 0.200 M KOH is added. B. Calculate the pH of the solution when 40.00 mL of 0.200 M KOH is added. C. Calculate the pH of the solution when 50.00 mL of 0.200 M KOH is added.
Consider the titration of a 34.0 mL sample of 0.170 M HBr with 0.200 M KOH....
Consider the titration of a 34.0 mL sample of 0.170 M HBr with 0.200 M KOH. Determine each of the following: 1. initial pH 2. the volume of added base required to reach the equivalence point 3. pH at 10.4 mL of added base 4. pH at the equivalence point
35 mL of a 0.0250 M pyridine is titrated with 0.00 mL, 10.00mL 15.00mL 20.00 mL...
35 mL of a 0.0250 M pyridine is titrated with 0.00 mL, 10.00mL 15.00mL 20.00 mL and 25.00mL of a 0.0438 M HCl solution. Calulate the pH of the solution after each addition and sketch the resulting graph
In an experiment, 20.00 mL of 0.30 M acetic acid is titrated with 0.30 M NaOH....
In an experiment, 20.00 mL of 0.30 M acetic acid is titrated with 0.30 M NaOH. What is the pH when the following volumes of NaOH is added? Ka for acetic acid is 1.8 x 10^-5. Show work with ICE table. a)5mL of NaOH added b)20mL of NaOH added c)35mL of NaOH added
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT