Question

In: Chemistry

Consider the titration of 20.00 mL of 0.100 M HBr with 0.150 M KOH at 25...

Consider the titration of 20.00 mL of 0.100 M HBr with 0.150 M KOH at 25 °C. What would be the pH of the solution when 20.00 mL of KOH have been added?

Solutions

Expert Solution

Moles of Acid or Base = Molarity x Volume in Ltr.

For Monoprotic acid HBr, Molarity = 0.1 M and Volume = 20.00 mL = 0.02 L

Moles of HBr = 0.1 x 0.02 = 0.002 moles.

For Monoacidic base KOH, Molarity = 0.15 M and Volume = 20.00 mL = 0.02 L

Moles of KOH = 0.15 x 0.02 = 0.003 moles.

Both HBr and KOH are strong electrolytes and hence ionizes completely.

Moles of H+ = Moles of HBr = 0.002 moles.

Moles of HO- = Moles of KOH = 0.003 moles.

On mixing these two solutiions 0.002 moles of H+ are completely neutralized by 0.002 moles HO- and excess of 0.001 moles HO- will remain unneutralized.

Moles of free HO- = 0.001 and Volume of solution = 0.02 L + 0.02 L = 0.04 L

Hence,

[HO-] = # of Moles / Volume in L

[HO-] = 0.001 moles / 0.04 L

[HO-] = 0.025 moles/L

[HO-] = 0.025 M.

By definition of pOH,

pOH = -log[HO-]

pOH =- log(0.025)

pOH = 1.60

Then

pH + pOH = 14

pH + 1.60 = 14

pH = 14 - 1.60

pH = 12.40

pH of resultant solution is 12.40.

========================XXXXXXXXXXXXXXXXXXXXXX=========================


Related Solutions

Consider the titration of 100.0 mL of 0.100 M HCN by 0.100 M KOH at 25°C....
Consider the titration of 100.0 mL of 0.100 M HCN by 0.100 M KOH at 25°C. Ka for HCN = 6.2×10-10. Part 1 Calculate the pH after 0.0 mL of KOH has been added. pH = Part 2 Calculate the pH after 50.0 mL of KOH has been added. pH = Part 3 Calculate the pH after 75.0 mL of KOH has been added. pH = Part 4 Calculate the pH at the equivalence point. pH = Part 5 Calculate...
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The...
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The Ka for the weak acid formic is 1.40 x 10-5. a. Determine the pH for the formic prior to its titration with KOH. b. Determine the pH of this solution at the ½ neutralization point of the titration. c. Identify the conjugate acid-base pair species at the ½ neutralization point.
Consider the titration of a 26.0 −mL sample of 0.180 M CH3NH2 with 0.150 M HBr....
Consider the titration of a 26.0 −mL sample of 0.180 M CH3NH2 with 0.150 M HBr. Determine each of the following. A the initial pH B the volume of added acid required to reach the equivalence point C   the pH at 6.0 mL of added acid D   the pH at one-half of the equivalence point E   the pH at the equivalence point F the pH after adding 5.0 mL of acid beyond the equivalence point
Consider the titration of a 26.0 −mL sample of 0.180 M CH3NH2 with 0.150 M HBr....
Consider the titration of a 26.0 −mL sample of 0.180 M CH3NH2 with 0.150 M HBr. Determine each of the following. a) the pH at 4.0 mL of added acid b) the pH at one-half of the equivalence point c) the pH at the equivalence point d) the pH after adding 6.0 mL of acid beyond the equivalence point
Consider the titration of a 23.0-mL sample of 0.180 M CH3NH2 with 0.150 M HBr. (The...
Consider the titration of a 23.0-mL sample of 0.180 M CH3NH2 with 0.150 M HBr. (The value of Kb for CH3NH2 is 4.4×10−4.) A.Determine the initial pH. B.Determine the volume of added acid required to reach the equivalence point. Express your answer using three significant figures. C.Determine the pH at 4.0 mL of added acid. D.Determine the pH at one-half of the equivalence point. E.Determine the pH at the equivalence point. F.Determine the pH after adding 6.0 mL of acid...
Consider the titration of a 28.0-mL sample of 0.170 M CH3NH2 with 0.150 M HBr. (The...
Consider the titration of a 28.0-mL sample of 0.170 M CH3NH2 with 0.150 M HBr. (The value of Kb for CH3NH2 is 4.4×10−4.) Determine the pH at 5.0 mL of added acid. Determine the pH at one-half of the equivalence point. Determine the pH after adding 6.0 mL of acid beyond the equivalence point
Consider the titration of a 34.0 mL sample of 0.170 M HBr with 0.200 M KOH....
Consider the titration of a 34.0 mL sample of 0.170 M HBr with 0.200 M KOH. Determine each of the following: 1. initial pH 2. the volume of added base required to reach the equivalence point 3. pH at 10.4 mL of added base 4. pH at the equivalence point
Consider the titration of a 33.0 mL sample of 0.175 M HBr with 0.210 M KOH....
Consider the titration of a 33.0 mL sample of 0.175 M HBr with 0.210 M KOH. Determine each of the following: Part A the initial pH Express your answer using three decimal places. pH = Part B the volume of added base required to reach the equivalence point Express your answer in milliliters. V = Part C the pH at 11.0 mL of added base Express your answer using three decimal places. pH = Part D the pH at the...
Consider the titration of 100.0 mL of 0.100 M NaOH with 1.00 M HBr. Find the...
Consider the titration of 100.0 mL of 0.100 M NaOH with 1.00 M HBr. Find the pH at the following volumes of acid added. Va = 0 mL Va = 1.0 mL Va = 5.0 mL Va = 9.0 mL Va = 9.9 mL Va = 10.0 mL Va = 10.1 mL Va = 12.0 mL Make a graph of pH versus Va = 0, 1.0, 5.0, 9.0, 9.9, 10.0, 10.1, and 12.0 mL.
Consider the titration of 40.0 mL of 0.200 M HClO4 by 0.100 M KOH. Calculate the...
Consider the titration of 40.0 mL of 0.200 M HClO4 by 0.100 M KOH. Calculate the pH of the resulting solution after the following volumes of KOH have been added. a. 0.0 mL d. 80.0 mL b. 10.0 mL e. 100.0 mL c. 40.0 mL answers are A) 0.699 B) 0.854 C) 1.301 D) 7.00 E) 12.15 I would just like to know how to do the work please and tbank you
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT