In: Chemistry
Part A
A 50.0-mL sample of 0.200 M sodium hydroxide is titrated with 0.200 M nitric acid.
Calculate the pH of the solution, after you add a total of 51.9 mL 0.200 M HNO3.
Express your answer using two decimal places.
A 39.0 mL sample of 0.146 M HNO2 is titrated with 0.300 M KOH. (Ka for HNO2 is 4.57×10−4.)
Determine the pH at the equivalence point for the titration of HNO2 and KOH
.
A)
Given:
M(HNO3) = 0.2 M
V(HNO3) = 51.9 mL
M(NaOH) = 0.2 M
V(NaOH) = 50 mL
mol(HNO3) = M(HNO3) * V(HNO3)
mol(HNO3) = 0.2 M * 51.9 mL = 10.38 mmol
mol(NaOH) = M(NaOH) * V(NaOH)
mol(NaOH) = 0.2 M * 50 mL = 10 mmol
We have:
mol(HNO3) = 10.38 mmol
mol(NaOH) = 10 mmol
10 mmol of both will react
remaining mol of HNO3 = 0.38 mmol
Total volume = 101.9 mL
[H+]= mol of acid remaining / volume
[H+] = 0.38 mmol/101.9 mL
= 3.729*10^-3 M
use:
pH = -log [H+]
= -log (3.729*10^-3)
= 2.4284
Answer: 2.43
B)
find the volume of KOH used to reach equivalence point
M(HNO2)*V(HNO2) =M(KOH)*V(KOH)
0.146 M *39.0 mL = 0.3M *V(KOH)
V(KOH) = 18.98 mL
Given:
M(HNO2) = 0.146 M
V(HNO2) = 39 mL
M(KOH) = 0.3 M
V(KOH) = 18.98 mL
mol(HNO2) = M(HNO2) * V(HNO2)
mol(HNO2) = 0.146 M * 39 mL = 5.694 mmol
mol(KOH) = M(KOH) * V(KOH)
mol(KOH) = 0.3 M * 18.98 mL = 5.694 mmol
We have:
mol(HNO2) = 5.694 mmol
mol(KOH) = 5.694 mmol
5.694 mmol of both will react to form NO2- and H2O
NO2- here is strong base
NO2- formed = 5.694 mmol
Volume of Solution = 39 + 18.98 = 57.98 mL
Kb of NO2- = Kw/Ka = 1*10^-14/4.57*10^-4 = 2.188*10^-11
concentration ofNO2-,c = 5.694 mmol/57.98 mL = 0.0982M
NO2- dissociates as
NO2- + H2O -----> HNO2 + OH-
0.0982 0 0
0.0982-x x x
Kb = [HNO2][OH-]/[NO2-]
Kb = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Kb = x*x/(c)
so, x = sqrt (Kb*c)
x = sqrt ((2.188*10^-11)*9.821*10^-2) = 1.466*10^-6
since c is much greater than x, our assumption is correct
so, x = 1.466*10^-6 M
[OH-] = x = 1.466*10^-6 M
use:
pOH = -log [OH-]
= -log (1.466*10^-6)
= 5.8339
use:
PH = 14 - pOH
= 14 - 5.8339
= 8.1661
Answer: 8.17