Question

In: Math

1) What is the battery current Ibat when the switch in the figure(Figure 1) is open?...

What is the battery current Ibat when the switch i

1) What is the battery current

Ibat when the switch in the figure(Figure 1) is open?

2)What is the potential difference
Vab between points a and b when the switch is open?

3)What is the battery current
Ibat when the switch is closed?

4) What is the potential difference
Vab between points a and b when the switch is closed?

Solutions

Expert Solution


Related Solutions

When switch S in the figure is open, the voltmeter V of the battery reads 3.08...
When switch S in the figure is open, the voltmeter V of the battery reads 3.08 V. When the switch is closed, the voltmeter reading drops to 2.98 V, and the ammeter A reads1.64 A. Assume that the two meters are ideal, so they don't affect the circuit.a) Find the emf.b) Find the internal resistance of the batteryc) Find the circuit resistance R.
For an ideal battery (r=0Ω), closing the switch in the figure(Figure 1) does not affect...
For an ideal battery (r=0Ω), closing the switch in the figure (Figure 1) does not affect the brightness of bulb A. In practice, bulb A dims just a little when the switch closes. To see why, assume that the 2.0 V battery has an internal resistance 0.2Ω and that the resistance of a glowing bulb is 8.0Ω . Part A What is the current through bulb A when the switch is open? Part B What is the current through bulb...
The switch in the figure below is open for t < 0 and is then thrown...
The switch in the figure below is open for t < 0 and is then thrown closed at time t = 0. (a) Find the current in the inductor. (Use the following as necessary: L, R, t, and for .) IL = (b) Find the current in the switch as functions of time thereafter. (Use the following as necessary: L, R, t, and for .) Iswitch =
1. When a switch is closed in a RL circuit with a battery, which of the...
1. When a switch is closed in a RL circuit with a battery, which of the following statement is TRUE? Back emf is maximum in the beginning and decreases exponentially with time Back emf is zero in the beginning and increases exponentially with time Current is maximum in the beginning and decreases exponentially with time Current is zero in the beginning and increases exponentially with time 2. When an inductor is connected to an AC voltage source with Vmax= 5...
The switch in the figure below is open for t<0 and is then thrown closed at...
The switch in the figure below is open for t<0 and is then thrown closed at time t = 0. Assume R = 8.00 2, L = 8.00 H, and E = 15.0 V. Find the following as functions of time thereafter. Assume current is in A and time is in s. Use the following as necessary: t.)  (a) the current in the inductor (b) the current in the switch
A circuit has a 2.9 V battery connected in series with a switch. When the switch...
A circuit has a 2.9 V battery connected in series with a switch. When the switch is closed, the battery powers two paths in parallel, one of which has a resistor of resistance R1 = 80 Ω in series with an inductor of inductance L = 1×10−2 H , while the other has a resistor of resistance R2 = 230 Ω . What is the current supplied by the battery at a time t = 0.25 ms after the switch...
Four resistors are connected to a battery as shown in the figure. The current in the...
Four resistors are connected to a battery as shown in the figure. The current in the battery is I, the battery emf is ? = 6.20 V, and the resistor values are R1 = R, R2 = 2R, R3 = 4R, R4 = 3R. Find the voltages across each resistor. R 1, R2 and R3 are in series. R4 is in parallel.
Bulbs A, B, and C in the figure(Figure 1) are identical and the switch is an...
Bulbs A, B, and C in the figure(Figure 1) are identical and the switch is an ideal conductor. How does closing the switch in the figure affect the potential difference? Check all that apply. Hints Check all that apply. The potential difference across A is unchanged. The potential difference across B drops to zero. The potential difference across A increases by 50%. The potential difference across B drops by 50%.
How much power does bulb A dissipate when the switch is open?
Problem 23.60 If the battery in (Figure 1 ) were ideal, lightbulb A would not dim when the switch is closed. However, real batteries have a small internal resistance, which we can model as the 0.3Ω resistor shown inside the battery. In this case, the brightness of bulb A changes when the switch is closed. Assume E=2.0 V.Part AHow much power does bulb A dissipate when the switch is open?Part BHow much power does bulb A dissipate when the switch is closed?
Consider an L-R circuit as shown in the figure. (Figure 1) The battery provides 12.0V of...
Consider an L-R circuit as shown in the figure. (Figure 1) The battery provides 12.0V of voltage. The inductor has inductance L, and the resistor has resistance R = 150? . The switch is initially open as shown. At time t=0, the switch is closed. At time tafter t=0 the current I(t) flows through the circuit as indicated in the figure. Part C What is the current reading I(?) given by the ammeter shown in the circuit (Figure 4) at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT