In: Statistics and Probability
Twenty-one mature flowers of a particular species were dissected, and the number of stamens and carpels present in each flower were counted.
| x, Stamens | 52 | 68 | 70 | 38 | 61 | 51 | 56 | 65 | 43 | 37 | 36 | 74 | 38 | 35 | 45 | 72 | 59 | 60 | 73 | 76 | 68 | 
| y, Carpels | 21 | 32 | 29 | 19 | 20 | 30 | 31 | 29 | 20 | 24 | 21 | 30 | 27 | 24 | 28 | 22 | 34 | 26 | 32 | 34 | 35 | 
(a) Is there sufficient evidence to claim a linear relationship
between these two variables at α = .05?
(i) Find r. (Give your answer correct to three decimal
places.)
(iii) State the appropriate conclusion.
Reject the null hypothesis, there is not significant evidence to claim a linear relationship.Reject the null hypothesis, there is significant evidence to claim a linear relationship. Fail to reject the null hypothesis, there is significant evidence to claim a linear relationship.Fail to reject the null hypothesis, there is not significant evidence to claim a linear relationship.
(b) What is the relationship between the number of stamens and the
number of carpels in this variety of flower?. (Give your answers
correct to two decimal places.)
| = | + x | 
(c) Is the slope of the regression line significant at α =
.05?(i) Find t. (Give your answer correct to two decimal
places.)
(ii) Find the P-value. (Give your answer bounds
exactly.)
< p <
(iii) State the appropriate conclusion.
Reject the null hypothesis, there is not evidence of a significant slope.Reject the null hypothesis, there is evidence of a significant slope. Fail to reject the null hypothesis, there is evidence of a significant slope.Fail to reject the null hypothesis, there is not evidence of a significant slope.
(d) Find the 98% prediction interval for the number of carpels that
one would expect to find in a mature flower of this variety if the
number of stamens were 61. (Give your answers correct to one
decimal place.)
| Lower Limit | |
| Upper Limit | 
a)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 52 | 21 | 16.3832 | 36.5737 | 24.4785 | 
| 68 | 32 | 142.8594 | 24.5261 | 59.1927 | 
| 70 | 29 | 194.6689 | 3.8118 | 27.2404 | 
| 38 | 19 | 325.7166 | 64.7642 | 145.2404 | 
| 61 | 20 | 24.5261 | 49.6689 | -34.9025 | 
| 51 | 30 | 25.4785 | 8.7166 | -14.9025 | 
| 56 | 31 | 0.0023 | 15.6213 | -0.1882 | 
| 65 | 29 | 80.1451 | 3.8118 | 17.4785 | 
| 43 | 20 | 170.2404 | 49.6689 | 91.9546 | 
| 37 | 24 | 362.8118 | 9.2880 | 58.0499 | 
| 36 | 21 | 401.91 | 36.57 | 121.24 | 
| 74 | 30 | 322.29 | 8.72 | 53.00 | 
| 38 | 27 | 325.72 | 0.00 | 0.86 | 
| 35 | 24 | 443.00 | 9.29 | 64.15 | 
| 45 | 28 | 122.05 | 0.91 | -10.52 | 
| 72 | 22 | 254.48 | 25.48 | -80.52 | 
| 59 | 34 | 8.72 | 48.34 | 20.53 | 
| 60 | 26 | 15.62 | 1.10 | -4.14 | 
| 73 | 32 | 287.38 | 24.53 | 83.95 | 
| 76 | 34 | 398.10 | 48.34 | 138.72 | 
| 68 | 35 | 142.86 | 63.24 | 95.05 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 1177.00 | 568.00 | 4064.95 | 532.95 | 855.95 | 
| mean | 56.05 | 27.05 | SSxx | SSyy | SSxy | 
i) correlation coefficient , r = Sxy/√(Sx.Sy) = 0.5815
ii) Ho:   ρ = 0  
Ha:   ρ ╪ 0  
n=   21  
alpha,α =    0.05  
correlation , r=   0.5815  
t-test statistic = r*√(n-2)/√(1-r²) =   
    3.116
DF=n-2 =   19  
p-value =    0.0057  
Decison:   p value < α , So, Reject
Ho  
critical t-value =    2.0930  
iii) Reject the null hypothesis, there is significant evidence to claim a linear relationship
b)
sample size ,   n =   21  
       
here, x̅ = Σx / n=   56.048   ,
    ȳ = Σy/n =   27.048  
          
       
SSxx =    Σ(x-x̅)² =    4064.9524  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   856.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   856.0  
/   4064.952   =   0.21057
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
15.24574          
          
       
so, regression line is   Ŷ =   15.25
+   0.21 *x
c)
i)
Ho:   ß1=   0      
   
H1:   ß1╪   0      
   
n=   21          
   
alpha =   0.05      
       
estimated std error of slope =Se(ß1) = Se/√Sxx =   
4.309   /√   4064.95   =  
0.0676
          
       
t stat = estimated slope/std error =ß1 /Se(ß1) =   
0.2106   /   0.0676  
=   3.12
ii) 0.001< p value <0.01
iii) Reject the null hypothesis, there is evidence of a significant slope.
d)
X Value=   61      
       
Confidence Level=   98%      
       
          
       
          
       
Sample Size , n=   21      
       
Degrees of Freedom,df=n-2 =   19  
           
critical t Value=tα/2 =   2.539   [excel
function: =t.inv.2t(α/2,df) ]      
   
          
       
X̅ =    56.05      
       
Σ(x-x̅)² =Sxx   4064.95      
       
Standard Error of the Estimate,Se=   4.3086  
           
          
       
Predicted Y at X=   61   is  
       
Ŷ =   15.2457   +  
0.2106   *61=   28.090
          
       
          
       
For Individual Response Y      
           
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =  
4.423          
   
margin of error,E=t*std error=t*S(ŷ)=   
2.539   *   4.423   =  
11.2313
          
       
Prediction Interval Lower Limit=Ŷ -E =  
28.090   -   11.231   =  
16.9
Prediction Interval Upper Limit=Ŷ +E =  
28.090   +   11.231   =  
39.3