Question

In: Physics

A student is observing the oscillations of a mass on the end of a spring.   The...

A student is observing the oscillations of a mass on the end of a spring.   The spring has a force constant of 6 x 10-5N/m, and the mass is 0.15 kg.   She pulls it 6 cm below equilibrium and lets it go.   She now writes an equation which she believes describes the motion of the mass. In her description, the y axis is vertical, and UP is positive.   Her equation is   
y = (3 cm) sin ( 0.02 sec-1 t   + 3.14)

    (A) Does she have the amplitude right?   If not, what was right? If yes, explain.
    (B) Does she have the frequency right?   If not, what was right? If yes, explain.
    (C) Does she have the phase angle right? If not, what was right? If yes, explain.

Solutions

Expert Solution


Related Solutions

A mass suspended at the end of a light Spring and spring constant K is set...
A mass suspended at the end of a light Spring and spring constant K is set into vertical motion use lagrange's equation to find the equation of motion of the mass
A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall.
 Part AA 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. The mass is pulled away from the equilibrium position (x = 0) a distance of 17.5 cm and released. It then oscillates in simple harmonic motion with a frequency of 8.38 Hz. At what position, measured from the equilibrium position, is the mass 2.50 seconds after it is released?–5.23 cm16.6 cm–5.41 cm–8.84 cm–11.6 cm Part BA 23.3-kg...
A mass of 0.30 kg on the end of a spring oscillates with a period of...
A mass of 0.30 kg on the end of a spring oscillates with a period of 0.45 s and an amplitude of 0.15 m . A) Find the velocity when it passes the equilibrium point. B) Find the total energy of the system. C) Find the spring constant. D) Find the maximum acceleration of the mass.
A block with mass 5 kg is attached to the end of a horizontal spring with...
A block with mass 5 kg is attached to the end of a horizontal spring with spring constant 200N/m. The other end of the spring is attached to a wall. The spring is stretched 10cm in the positive directions from its equilibrium length. Assume that the block is resting on a frictionless surface. A) When the spring is fully stretched, what is the magnitude of the force from the spring on the block? B) We then release the block, letting...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring
PLEASE ANSWER ALL 3 WILL THUMBS UP 1) A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 8 m/s. Find the equation of motion. x(t)=? m 2) Find the charge on the capacitor and the current in an LC-series circuit when L = 0.1 h, C = 0.1 f, E(t) = 100 sin(γt)...
A block of mass m= 10.0kg is attached to the end of an ideal spring. Due...
A block of mass m= 10.0kg is attached to the end of an ideal spring. Due to the weight of the block, the block remains at rest when the spring is stretched a distance h= 8.00cm from its equilibrium length. (Figure 1) The spring has an unknown spring constant k. Take the acceleration due to gravity to be g = 9.81m/s2 . What is the spring constant k? Express your answer in newtons per meter.         k...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in SHM with a period of 18.00 ms. The position of the block is given by x = (0.600 cm) cos(ωt + π/2). Block 1 of mass 4.40 kg slides toward block 2 with a velocity of magnitude 7.80 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 4.50 ms. (The duration of the collision is...
A block with mass M is connected to one end of a horizontal spring of constant...
A block with mass M is connected to one end of a horizontal spring of constant k, the other end of which is attached to the wall. The block moves with a simple harmonic motion on a frictionless surface. The amplitude of the harmonic motion is A1. When the block passes through the equilibrium position, a piece of plasticine, of mass m, is dropped vertically on the block and remains glued to it. Calculate the energy of the system in...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring in SHM with a period of 26.00 ms. The position of the block is given by x = (0.700 cm) cos(?t + ?/2). Block 1 of mass 5.80 kg slides toward block 2 with a velocity of magnitude 8.70 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 6.50 ms. (The duration of the collision...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT