Question

In: Physics

A block of mass m= 10.0kg is attached to the end of an ideal spring. Due...

A block of mass m= 10.0kg is attached to the end of an ideal spring. Due to the weight of the block, the block remains at rest when the spring is stretched a distance h= 8.00cm from its equilibrium length. (Figure 1) The spring has an unknown spring constant k. Take the acceleration due to gravity to be g = 9.81m/s2 .

Image for A block of mass m= 10.0kg is attached to the end of an ideal spring. Due to the weight of the block, the block

What is the spring constant k?

Express your answer in newtons per meter.

 
   
 
k =     N/m  

Part B

Suppose that the block gets bumped and undergoes a small vertical displacement. Find the resulting angular frequency ? of the block's oscillations about its equilibrium position.

Express your answer in radians per second.

 
   
 
? =     radians/s  
A block of mass m= 10.0kg is attached to the end of an ideal spring. Due to the weight of the block, the block remains at rest when the spring is stretched a distance h= 8.00cm from its equilibrium length. (Figure 1) The spring has an unknown spring constant k. Take the acceleration due to gravity to be g = 9.81m/s2 .What is the spring constant k? Express your answer in newtons per meter. k =N/m Part B Suppose that the block gets bumped and undergoes a small vertical displacement. Find the resulting angular frequency ? of the block's oscillations about its equilibrium position. Express your answer in radians per second. ? =radians/s

Solutions

Expert Solution


Related Solutions

A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A block of mass m = 2.6kg is attached to a single spring of spring constant...
A block of mass m = 2.6kg is attached to a single spring of spring constant k = 4.4Nmand allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is x=0m. At time t=0s the mass is at position x=2.7m and moving with x-component of velocity vx=−6.8ms. What is the x-component of velocity at time t=1.3s? Answer in meters per second.
A block with mass 5 kg is attached to the end of a horizontal spring with...
A block with mass 5 kg is attached to the end of a horizontal spring with spring constant 200N/m. The other end of the spring is attached to a wall. The spring is stretched 10cm in the positive directions from its equilibrium length. Assume that the block is resting on a frictionless surface. A) When the spring is fully stretched, what is the magnitude of the force from the spring on the block? B) We then release the block, letting...
A frictionless block of mass 1.55 kgkg is attached to an ideal spring with force constant...
A frictionless block of mass 1.55 kgkg is attached to an ideal spring with force constant 350 N/m . At t=0 the spring is neither stretched nor compressed and the block is moving in the negative direction at a speed of 12.9 m/s . a)Find the amplitude. b)Find the phase angle. c)Write an equation for the position as a function of time. a)x=(−x=(−0.858 mm )sin(()sin((15.0 rad/srad/s )t))t) b)x=(−x=(−0.858 mm )cos(()cos((15.0 rad/srad/s )t))t) c)x=(−x=(−15.0m)sin((m)sin((0.858rad/s)t)rad/s)t) d)x=(−x=(−15.0m)cos((m)cos((0.858rad/s)t)rad/s)t)
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose spring constant is k = 3580 N/m. The spring is compressed x = 0.073 m and released. After losing contact with the spring, the block slides a distance of d = 1.71 m across the floor before coming to rest. A.) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT