Question

In: Chemistry

You heat 18.57 g of a solid in a test tube to 99.8°C and then add...

You heat 18.57 g of a solid in a test tube to 99.8°C and then add the solid to 65.50 g of water in a coffee-cup calorimeter. The water temperature changes from 24.46°C to 29.27°C. Find the specific heat capacity of the solid in J/g°C. The specific heat capacity of water is 4.184 J/g°C. Enter to 3 decimal places.

Solutions

Expert Solution

Ans. Amount of gained by water when its temperature increases from 24.460C to 29.270C is given by-

            q = m s dT                            - equation 1

Where,

q = heat absorbed

m = amount of water

s = specific heat of water [ 4.184 J g-10C-1]

dT = Final temperature – Initial temperature

= 29.270C – (24.460C) = 4.810C

Putting the values in equation 1-

            q = 65.50 g x (4.184 J g-10C-1) x 4.810C = 1318.19012 J

# Amount of heat gained by water must be equal to the amount of heat lost by the solid.

So,

            Amount of heat lost by solid, q1 = - 1318.19012 J (the –ve gin indicates loss of heat)

When placed in calorimeter, the solid attains thermal equilibrium with the water. So, the final temperature of the solid = 29.270C

            dT = 29.270C – 99.80C = -70.530C ; the –ve sign indicates reduction in temperature

Again, using equation 1 for the solid-

            - 1318.19012 J = 18.57 g x s x (-70.530C)

            Or, s = 1318.19012 J / (18.57 g x 70.530C) = 1.006 J g-10C-1

Hence, specific heat (specific heat capacity) of the solid = 1.006 J g-10C-1


Related Solutions

Heat transfer In a test in a double tube heat exchanger the following data are obtained...
Heat transfer In a test in a double tube heat exchanger the following data are obtained For hot fluid Flow = 11.6 gal / sec Outlet temperature = 30.1 ° C Inlet temperature = 32 ° C For cold fluid Flow 11gal / min Outlet temperature 25.1 ° C Inlet temperature 24.2 ° C For the fluid consider k = 0.49 w / mK cp = 3729.95 J / kgK Prandtl number = 14.29 Density = 1035.02kg / m3 Get:...
Heat transfer in a test in a double tube heat exchanger the following data are obtained...
Heat transfer in a test in a double tube heat exchanger the following data are obtained For hot fluid Flow = 11.6 gal / sec Outlet temperature = 30.1 ° C Inlet temperature = 32 ° C For cold fluid Flow 11gal / min Outlet temperature 25.1 ° C Inlet temperature 24.2 ° C For the fluid consider k = 0.49 w / mK cp = 3729.95 J / kgK Prandtl number = 14.29 Density = 1035.02kg / m3 Get:...
How much heat energy is required to convert 87.8 g of solid ethanol at −114.5°C to...
How much heat energy is required to convert 87.8 g of solid ethanol at −114.5°C to gasesous ethanol at 184.2°C? The molar heat of fusion of ethanol is 4.60 kJ/mol, and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of −114.5°C and a normal boiling point of 78.4°C. The specific heat capacity of liquid ethanol is 2.45J/g⋅°C, and that of gaseous ethanol is 1.43J/g⋅°C.
How much heat energy is required to convert 11.7 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 11.7 g of solid ethanol at -114.5 °C to gasesous ethanol at 165.1 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C.
How much heat energy is required to convert 53.0 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 53.0 g of solid ethanol at -114.5 °C to gasesous ethanol at 141.8 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C.
How much heat energy is required to convert 82.2 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 82.2 g of solid ethanol at -114.5 °C to gasesous ethanol at 129.6 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C.
You add 7.25 g of ice at 0.00 C to 100 g of water at 80.0...
You add 7.25 g of ice at 0.00 C to 100 g of water at 80.0 C. What is the final temperature of the mixture at thermal equilibrium assuming no heat loss to the surroundings? The specific heat capacity of liquid water is 4.184 J/gC and the enthalpy of fusion for water is 6.02 kJ/mol at 0.00C.
If you add heat slowly to ice at 0°C, why doesn't the temperature of the ice...
If you add heat slowly to ice at 0°C, why doesn't the temperature of the ice increase? What becomes of this heat energy? Likewise, if you add heat to boiling water, the temperature remains at 100°C. What is happening to the heat you add? Temperature and Heat Conceptual Question...Please answer the question directly with brief explanation. will rate based on clarity and explanation...Thank you!!
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to...
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to 39°C. The oil flow-rate is 6.127 kg/s. Cooling water is available at 29°C and at the rate of 27.127 kg/s. The pressure drop allowance for each stream is 100 kN/m2 . Design a suitable shell and tube heat exchanger for this duty. The following are the properties of the two streams at the average temperature: water crude oil density kg/m3 990 850 viscosity mNm-2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT