Question

In: Physics

A thin copper rod has a mass per unit length of 0.1 kg/m. What is the...

A thin copper rod has a mass per unit length of 0.1 kg/m. What is the minimum current in the rod that would allow it to levitate above the ground in a magnetic field of magnitude 0.5 T? (g = 10.0 m/s2)
  1. 2.9 A
  2. 2.5 A
  3. 2.2 A
  4. 2.0 A
  5. 1.8 A

Solutions

Expert Solution

The entire question isn't visible in the frame, so I'm assuing that the magnetic field is perpendicular to the direction of the current flow and solving the question accordingly. As the rod levitates above the ground in the presence of magnetic field, so the magnetic force must balance the weight of the rod and for magnetic force there must be a current. So by equating both of the forces we can easily calculate the current.​​​​​​​


Related Solutions

A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A thin rod (mass 8.28 kg, length 8.04 m) is sitting on a horizontal, frictionless table....
A thin rod (mass 8.28 kg, length 8.04 m) is sitting on a horizontal, frictionless table. There is a 0.626 kg frog sitting on the very end of the rod; you can treat the frog as a point particle. Suddenly the frog jumps off at speed 4.75 m/s, moving horizontally and perpendicular to the rod. Find ω, the angular speed of the rod after the frog jumps off, in rad/s.
A slender rod with length L has a mass per unit length that varies with distance...
A slender rod with length L has a mass per unit length that varies with distance from the left end, where ? = 0, according to ??/?? = ??, where ? has units of kg/m^2 a. Calculate the total mass M of the rod in terms of ? and L. b. Use the equation ? = ∫ ?=?? to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Express your...
Attached to each end of a thin steel rod of length 1.10 m and mass 6.60...
Attached to each end of a thin steel rod of length 1.10 m and mass 6.60 kg is a small ball of mass 1.07 kg. The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at 39.0 rev/s. Because of friction, it slows to a stop in 32.0 s. Assuming a constant retarding torque due to friction, find the following. A) Angular Acceleration rad/sec^2 B) Retarding...
A ballistic pendulum consists of a thin rod AB (length = 2.0 m; mass = 1.14...
A ballistic pendulum consists of a thin rod AB (length = 2.0 m; mass = 1.14 kg) that is rigidly attached to a solid sphere that has a center C, radius = 0.4 m, and mass = 2.45 kg. A bullet (mass = 0.01 kg) is fired at point C with a speed of 675 m/s. Determine the amount of kinetic energy lost by the system due to the impact.
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. (a) After the combination rotates through 90...
A thin, cylindrical rod ℓ = 22.2 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 22.2 cm long with a mass m = 1.20 kg has a ball of diameter d = 6.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. (a) After the combination rotates through 90...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. I am looking for the; How does...
A rod of length L has a charge per unit length λ. The rod rotates around...
A rod of length L has a charge per unit length λ. The rod rotates around its center at angular frequency ω. Using the dipole approximation, find the power radiated by the rotating rod.
QUESTION 1: A thin uniform rod has a length of 0.400 m and is rotating in...
QUESTION 1: A thin uniform rod has a length of 0.400 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.35 rad/s and a moment of inertia about the axis of 2.90×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT