In: Chemistry
For the reaction, where M is an inert gas atom (such as He or Ar),
O + NO + M --> NO2 + M
the rate constant k exibits thte following temperature behavior:
at 300K, k = 6 x 109 L2mol-2s-1
at 1000K, k = 3 x 1010 L2mol-2s-1
Determine the activation energy and the prexponential factor using the Arrhenius equation.
Given, O + NO + M --> NO2 + M
at T = 300K , k= 6*109 L2mol-2s-1
at 1000K, k = 3 x 1010 L2mol-2s-1
Arehenius law states that ,
k = k0 e -E/RT
Where, E = activation energy (J)
R = ideal gas constat (L-atm/mol.K)
T= temperature (K)
k = rate constant
k0 = proportionality constant
k = k0 e -E/RT
Apply log on both sides,
==> ln k = ln k0 + -E/RT ln e ==> ln k = ln k0 + -E/RT
at temperature T1 , k = k1 then
==> ln k1 = ln k0 + -E/RT1 --------------> (1)
at temperature T2, k = k2 then
==> ln k2 = ln k0 + -E/RT2 -----------------> (2)
now, (1) - (2) gives,
ln k1- lnk2 = ln k0 + -E/RT1 - ( ln k0 + -E/RT2 )
ln ( k1/k2) = -E/RT1 + E/RT2 = -E /R [ ( 1/T2 ) - (1/T1 ) ]
Therefore, ln ( k1/k2) = -E /R [ ( 1/T2 ) - (1/T1 ) ]
Now, substitute, T1 =300K, and k1 = 6 x 109 L2mol-2s-1
and T2 = 1000K, and k2 = 3 x 1010 L2mol-2s-1
therefore, ln ( 6 x 109 / 3 x 1010) = -E /0.082[ ( 1/1000 ) - (1/300 ) ] ==> E = -56.5 L-atm
E = -56.5 L-atm = -56.5 * 101.33 joules (J) = -5.731 *103 J
Therefore, Activation energy , E = -5.731 *103 J