In: Math
El documento de Excel anexo presenta las estadísticas de criminalidad en una ciudad. También se presentan otros datos importantes a cerca de educación. El propósito de este ejercicio es crear dos modelos de regresión lineal múltiple donde se trate de predecir: a) Y1 usando como predictores X3,X5,X6 b) Y2 usando como predictores X3,X4,X7 En cada caso se necesita: 1. El modelo (todos los coeficientes beta) y la interpretación de cada coeficiente. 2. Cuan significativos son cada uno de los coeficientes 3. El coeficiente de determinación del modelo (R cuadrado) 4. La interpretación de R cuadrado 5. En el caso (a) prediga: Cuál será la tasa de crímenes totales reportados por milón de habitantes si se asignan 50 dólares anuales por habitante a la policía, hay un 10% de jóvenes entre 16 y 19 años que no asisten a la escuela superior (ni la han finalizado) y hay un 50% de jóvenes entre 18 y 24 años que asisten a la universidad. 6. En el caso (b) prediga: Cuántos crímenes de violencia se reportarán si se asignan 20 dólares anuales por habitante a la policía, hay 60% de personas de más de 25 años que finalizaron la escuela superior y hay un 5% de personas de 25 años o más que lograron una carrera universitaria de 4 años. 7. Luego de hacer todo este análisis arroje conclusiones prácticas acerca de los hallazgos hechos en esta ciudad. 8. Si usted es un consejero para las autoridades de esa ciudad, por favor escriba un parrafo de recomendaciones a seguir para tratar de reducir la criminalidad. ABAJO APARECEN CIERTAS FÓRMULAS QUE LE PUEDE SER DE UTILIDAD, AUNQUE LA RECOMENDACIÓN QUE RESUELVA TODO EL PROBLEMA USANDO R Y/O EXCEL PARA EL MISMO.
Y1 | Y2 | X3 | X4 | X5 | X6 | X7 | Y1 = Crímenes totales reportados por millón de habitantes | |||||||||
478 | 184 | 40 | 74 | 11 | 31 | 20 | Y2 = Crímenes de violencia reportados por cada 100,000 habitantes | |||||||||
494 | 213 | 32 | 72 | 11 | 43 | 18 | X3 = Presupuesto anual para la policía dólares por habitante | |||||||||
643 | 347 | 57 | 70 | 18 | 16 | 16 | X4 = % de personas de 25 años o más que finalizaron la escuela superior (high school) | |||||||||
341 | 565 | 31 | 71 | 11 | 25 | 19 | X5 = % de jovenes entre 16 y 19 años que no asisten a la escuela superior ni se han graduado de ella. | |||||||||
773 | 327 | 67 | 72 | 9 | 29 | 24 | X6 = % de jóvenes de 18 a 24 años que asisten a la universidad | |||||||||
603 | 260 | 25 | 68 | 8 | 32 | 15 | X7 = % de personas con 25 años o más que lograron una carrera universitaria de 4 años | |||||||||
484 | 325 | 34 | 68 | 12 | 24 | 14 | ||||||||||
546 | 102 | 33 | 62 | 13 | 28 | 11 | ||||||||||
424 | 38 | 36 | 69 | 7 | 25 | 12 | ||||||||||
548 | 226 | 31 | 66 | 9 | 58 | 15 | ||||||||||
506 | 137 | 35 | 60 | 13 | 21 | 9 | ||||||||||
819 | 369 | 30 | 81 | 4 | 77 | 36 | ||||||||||
541 | 109 | 44 | 66 | 9 | 37 | 12 | ||||||||||
491 | 809 | 32 | 67 | 11 | 37 | 16 | ||||||||||
514 | 29 | 30 | 65 | 12 | 35 | 11 | ||||||||||
371 | 245 | 16 | 64 | 10 | 42 | 14 | ||||||||||
457 | 118 | 29 | 64 | 12 | 21 | 10 | ||||||||||
437 | 148 | 36 | 62 | 7 | 81 | 27 | ||||||||||
570 | 387 | 30 | 59 | 15 | 31 | 16 | ||||||||||
432 | 98 | 23 | 56 | 15 | 50 | 15 | ||||||||||
619 | 608 | 33 | 46 | 22 | 24 | 8 | ||||||||||
357 | 218 | 35 | 54 | 14 | 27 | 13 | ||||||||||
623 | 254 | 38 | 54 | 20 | 22 | 11 | ||||||||||
547 | 697 | 44 | 45 | 26 | 18 | 8 | ||||||||||
792 | 827 | 28 | 57 | 12 | 23 | 11 | ||||||||||
799 | 693 | 35 | 57 | 9 | 60 | 18 | ||||||||||
439 | 448 | 31 | 61 | 19 | 14 | 12 | ||||||||||
867 | 942 | 39 | 52 | 17 | 31 | 10 | ||||||||||
912 | 1017 | 27 | 44 | 21 | 24 | 9 | ||||||||||
462 | 216 | 36 | 43 | 18 | 23 | 8 | ||||||||||
859 | 673 | 38 | 48 | 19 | 22 | 10 | ||||||||||
805 | 989 | 46 | 57 | 14 | 25 | 12 | ||||||||||
652 | 630 | 29 | 47 | 19 | 25 | 9 | ||||||||||
776 | 404 | 32 | 50 | 19 | 21 | 9 | ||||||||||
919 | 692 | 39 | 48 | 16 | 32 | 11 | ||||||||||
732 | 1517 | 44 | 49 | 13 | 31 | 14 | ||||||||||
657 | 879 | 33 | 72 | 13 | 13 | 22 | ||||||||||
1419 | 631 | 43 | 59 | 14 | 21 | 13 | ||||||||||
989 | 1375 | 22 | 49 | 9 | 46 | 13 | ||||||||||
821 | 1139 | 30 | 54 | 13 | 27 | 12 | ||||||||||
1740 | 3545 | 86 | 62 | 22 | 18 | 15 | ||||||||||
815 | 706 | 30 | 47 | 17 | 39 | 11 | ||||||||||
760 | 451 | 32 | 45 | 34 | 15 | 10 | ||||||||||
936 | 433 | 43 | 48 | 26 | 23 | 12 | ||||||||||
863 | 601 | 20 | 69 | 23 | 7 | 12 | ||||||||||
783 | 1024 | 55 | 42 | 23 | 23 | 11 | ||||||||||
715 | 457 | 44 | 49 | 18 | 30 | 12 | ||||||||||
1504 | 1441 | 37 | 57 | 15 | 35 | 13 | ||||||||||
1324 | 1022 | 82 | 72 | 22 | 15 | 16 | ||||||||||
940 | 1244 | 66 | 67 | 26 | 18 | 16 |
Model 1 - a) Y1 using as predictors X3, X5, X6
Step 1 : Put the data in excel as shown.
Step 2 : Data, click on data analysis and select regression
Step 3 : Update the values as shown.
Step 4: Output will give as shown
Regression equation
Y1 = 79.3032 + 10.4068 X3 + 11.6861 X5 + 2.1982 X6
1. The model (all beta coefficients) and the interpretation of each coefficient.
Interpretation of each varaible
X3 : 1 unit increase in annual budget for the police dollar per capital increase the total crimes reported per million inhabintants by 10.4068
X5 : 1 unit increase in the % of young people between 16 and 19 who do not attend high school or have graduated from it increases the Total crimes reported per million inhabitants by 11.6861
X6 : 1 unit increase in the % of young people aged 18 to 24 who
attend university increase the the Total crimes reported per
million inhabitants by 2.1982
2. How significant are each of the coefficients
For each beta coefficient we test the following hypothesis.
\\H_0 : \beta_i = 0\\
H_1 : \beta_i \ne 0\\
Next we check the pvalue for the variable in the regression output and check if the pvalue is less than 0.05, if it is less than 0.05, then we reject the null hypothesis and conclude that the variable is significant.
The pvalue of each case are highlighted in green
The pvalue for X3 is less than 0.05, hence it is
signficant.
The pvalue for X5 and X6 are greater than 0.05, hence they are not
signficant predictor variables.
3. The coefficient of determination of the model (R squared) - 0.3187 (Highlighted in orange)
4. The interpretation of R squared
It is the measure of the amount of varaiblity in y explained by x.
Its value lies between 0 and 1. Greater the value, better is the
model. In this case, it 31.87%, hence the model is not good
Model 1 - b) Y2 using as predictors X3, X4, X7
Step 1 : Put the data in excel as shown.
Step 2 : Data, click on data analysis and select regression
Step 3 : Update the values as shown.
Step 4: Output will give as shown
Regression equation
Y2 = 702.1762 + 22.1977 X3 -18.5105 X4 +11.8841 X7
1. The model (all beta coefficients) and the interpretation of each coefficient.
Interpretation of each varaible
X3 : 1 unit increase in Annual budget for the police dollars per
capita increases Violence crimes reported per 100,000 inhabitants
by 22.1977
X4 : 1 unit increase in % of people 25 years of age or older who
finished high school decreases Violence crimes reported per 100,000
inhabitants by 18.5105
X7 :1 unit increase in % of people with 25 years or more who
achieved a 4-year university career increase Violence crimes
reported per 100,000 inhabitants by 11.8841
2. How significant are each of the coefficients
Pvalue for X3 and X4 are less than 0.05, hence the variable are
signficant.
Pvalue for X7 is greater than 0.05, hence the variable is not
signficant.
3. The coefficient of determination of the model (R squared) - 0.3267 (Highlighted in orange)
4. The interpretation of R squared
It is the measure of the amount of varaiblity in y explained by x.
Its value lies between 0 and 1. Greater the value, better is the
model. In this case, it 32.67%, hence the model is not good