Question

In: Chemistry

Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....

Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia.

N2(g)+3H2(g)-->2NH3(g)

Assume 0.210 mol N2 and 0.664 mol H2 are present initially.

1.)After complete reaction, how many molecules of ammonia are produced?

2.How many molecules of H2 remain?

3.How many molecules of N2 remain?

4.What is the limiting reactant, Hydrogen or Nitrogen?

Solutions

Expert Solution


Related Solutions

Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. After complete reaction, how many molecules of ammonia are produced? How many molecules of H2 remain? How many molecules of N2 remain? What is the limiting reactant? Assume 4 molecules of nitrogen and 9 molecules of hydrogen are present.
nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2(g)+3H2(g) > 2NH3(g). assume 0.270 mol of N2 and 0.877 mol of H2 are present initially. Questions- 1. after complete reaction, how many moles of ammonia are produced? 2. how many moles of H2 remain? 3. how many moles of N2 remain? 4. what is the limiting reactant(hydrogen or nitrogen)?
21. In the Haber - Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia...
21. In the Haber - Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the following equation 3 H 2 (g) + N 2 (g) → 2 NH 3 (g) The production of ammonia is difficult and often results in lower yields than those predicted from the chemical equation. For instance, if 1.36 g of hydrogen gas are allowed to react with 9.97 g of nitrogen gas, 2.24 g of ammonia are produced. What is the...
The reaction between nitrogen and hydrogen is used to produce ammonia (NH3). Give the balanced chemical...
The reaction between nitrogen and hydrogen is used to produce ammonia (NH3). Give the balanced chemical reaction Draw the electron dot structures of all these chemical species. What is the predicted VSEPR geometry of all these chemical species? When 450. g of hydrogen was reacted with excess nitrogen; 1575 g of ammonia were produced. What is the percent yield of this reaction? Assuming that only the product is collected, what is the pressure inside of a 10.0 L tank at...
Ammonia, NH3, and oxygen can be reacted together in the presence of a catalyst to form...
Ammonia, NH3, and oxygen can be reacted together in the presence of a catalyst to form only nitrogen monoxide and water. The number of moles of oxygen consumed for every 9.00 moles of NO produced is :
Be sure to answer all parts. Ammonia is produced by the reaction of nitrogen and hydrogen...
Be sure to answer all parts. Ammonia is produced by the reaction of nitrogen and hydrogen according to the equation N2(g) + 3H2(g) → 2NH3(g) 1. Calculate the mass of ammonia produced when 30.0 g of nitrogen react with 11.3 g of hydrogen. 2. Which is the excess reactant and how much of it will be left over when the reaction is complete?
Ammonia is produced by the catalytic reaction of nitrogen and hydrogen. A)   Write the chemical reaction...
Ammonia is produced by the catalytic reaction of nitrogen and hydrogen. A)   Write the chemical reaction and balance it. Determine the stoichiometric coefficients. B)    If 15 mol/sec of H2 is fed to the reactor, determine the amount of N2 required if a 20.% excess (of N2) is desired. C)    If 5.0 mol/sec of H2 exits the catalytic reactor, determine: i)   ξ. ii)   the number of moles of all three components exiting the reactor. iii)   the conversion of H2...
A reaction of nitrogen and sufficient hydrogen produced 30.0 g of ammonia, which is a 65.0%...
A reaction of nitrogen and sufficient hydrogen produced 30.0 g of ammonia, which is a 65.0% yield for the reaction. N2(g)+3H2(g)→2NH3(g) How many grams of nitrogen reacted?
In this reaction, nitrogen gas combines with hydrogen gas to yield ammonia. The enthalpy (ΔH) of...
In this reaction, nitrogen gas combines with hydrogen gas to yield ammonia. The enthalpy (ΔH) of this reaction is -92.22 kJ/mol.For this experiment, 17.15 grams of nitrogen gas and 10.95 grams of hydrogen gas are allowed to react in the reaction vessel. The ammonia vapor that is produced is then condensed, liquefied, and collected into a collection vessel. Write a balanced thermochemical equation with phase labels for the Haber process with the heat energy as part of the equation. What...
Ammonia is produced from the reaction of nitrogen and hydrogen according to the following balanced equation:...
Ammonia is produced from the reaction of nitrogen and hydrogen according to the following balanced equation: N2(g) + 3H2(g) → 2NH3(g) 1. What is the maximum mass of ammonia that can be produced from a mixture of 205.9 g of N2and 48.59 g of H2?  g 2. Which element would be completely consumed? (enter nitrogen or hydrogen) 3. What mass of the starting material would remain unreacted?  g I got it wrong with 7.35g as the answer to the first part
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT