Question

In: Chemistry

21. In the Haber - Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia...

21.

In the Haber

-

Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia

according to the following equation

3 H

2

(g) + N

2

(g) → 2 NH

3

(g)

The production of ammonia is difficult and often results in lower yields than those predicted

from the chemical equation. For instance, if 1.36 g of hydrogen gas are allowed to react with

9.97 g of nitrogen gas, 2.24 g of ammonia are produced. What is the

theoretical yield

of the

reaction?

- Not sure why this copied over weird but could i get a detailed walk through for this problem.

Solutions

Expert Solution

1)

Molar mass of H2 = 2.016 g/mol

mass(H2)= 1.36 g

use:

number of mol of H2,

n = mass of H2/molar mass of H2

=(1.36 g)/(2.016 g/mol)

= 0.6746 mol

Molar mass of N2 = 28.02 g/mol

mass(N2)= 9.97 g

use:

number of mol of N2,

n = mass of N2/molar mass of N2

=(9.97 g)/(28.02 g/mol)

= 0.3558 mol

Balanced chemical equation is:

3 H2 + N2 ---> 2 NH3 +

3 mol of H2 reacts with 1 mol of N2

for 0.6746 mol of H2, 0.2249 mol of N2 is required

But we have 0.3558 mol of N2

so, H2 is limiting reagent

we will use H2 in further calculation

Molar mass of NH3,

MM = 1*MM(N) + 3*MM(H)

= 1*14.01 + 3*1.008

= 17.034 g/mol

According to balanced equation

mol of NH3 formed = (2/3)* moles of H2

= (2/3)*0.6746

= 0.4497 mol

use:

mass of NH3 = number of mol * molar mass

= 0.4497*17.03

= 7.661 g

Answer: Theoretical yield = 7.66 g

2)

% yield = actual mass*100/theoretical mass

= 2.24*100/7.661

= 29.24%

Answer: percent yield = 29.2 %


Related Solutions

The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.73 g H2 is allowed to react with 10.3 g N2, producing 2.34 g NH3. Part A What...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according to the equation given below: N2(g) + 3H2(g) ⇋ 2NH3(g) Calculate the percentage yield of ammonia
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according to the equation given below: N2(g) + 3H2(g) ⇋ 2NH3(g) Calculate the percentage yield of ammonia
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) Part B How many grams of NH3 can be produced from 2.15 mol of N2 and excess H2. Part C How many grams of H2 are needed to produce 13.02 g of NH3? Part D How many molecules (not moles) of NH3 are produced from 4.83×10−4 g of H2? Express your answer numerically as the number of molecules.
1) Nitrogen monoxide gas reacts with hydrogen gas to form ammonia gas and water vapor. This...
1) Nitrogen monoxide gas reacts with hydrogen gas to form ammonia gas and water vapor. This reaction is reversible (can go forward and reverse). If the temperature is held constant for this reaction, predict the direction the equilibrium will shift given the following changes given below and provide a brief explanation of why it will go in the direction you indicated: (a) Removing hydrogen gas (b) Adding nitrogen monoxide gas (c) Adding water vapor (d) Removing ammonia gas (e) Increasing...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3 How many grams of H2 are needed to produce 10.70 g of NH3? How many molecules (not moles) of NH3 are produced from 3.21×10−4 g of H2?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3 How many grams of H2 are needed to produce 10.70 g of NH3? How many molecules (not moles) of NH3 are produced from 3.21×10−4 g of H2?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1a. How many grams of NH3 can be produced from 2.60 mol of N2 and excess H2 1b. How many grams of H2 are needed to produce 11.32 g of NH3? 1c. How many molecules (not moles) of NH3 are produced from 4.06×10−4 g of H2?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) a. How many grams of H2 are needed to produce 11.70 g of NH3? b. How many molecules (not moles) of NH3 are produced from 4.42×10−4 g of H2?
Hydrogen gas reacts with nitrogen gas to form ammonia according to the reaction below. H2 (g)...
Hydrogen gas reacts with nitrogen gas to form ammonia according to the reaction below. H2 (g) + N2 (g) → NH3 (g) a. How many moles of NH3 are produced for every 1 mole of H2? Classify this reaction. b. Suppose 12.2 g of H2 (g) reacts with 48.4 g of N2 (g). Identify the limiting reactant. What is the theoretical yield of the ammonia product in grams ? Show your work. c. What mass (in grams) of the excess...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT