In: Electrical Engineering
If you were to design a communication system for voice frequencies, explain which modulation technique you would use for the following cases: Very high Immunity to noise and interference is important Narrow signal bandwidth is important, Simple and a cheap electrical receiver is importance. In your opinion, which technique is the most expensive and why?
Single sideband modulation is widely used in the HF portion, or short wave portion of the radio spectrum for two way radio communication. There are many users of single sideband modulation. Many users requiring two way radio communication will use single sideband and they range from marine applications, generally HF point to point transmissions, military as well as radio amateurs or radio hams.
Single sideband modulation or SSB is derived from amplitude modulation (AM) and SSB modulation overcomes a number of the disadvantages of AM.
Single sideband modulation is normally used for voice transmission, but technically it can be used for many other applications where two way radio communication using analogue signals is required.
As a result of its widespread use there are many items of radio communication equipment designed to use single sideband radio including: SSB receiver, SSB transmitter and SSB transceiver equipments.
SSB receiver
While signals that use single sideband modulation are more efficient for two way radio communication and more effective than ordinary AM, they do require an increased level of complexity in the receiver. As SSB modulation has the carrier removed, this needs to be re-introduced in the receiver to be able to reconstitute the original audio. This is achieved using an internal oscillator called a Beat Frequency Oscillator (BFO) or Carrier Insertion Oscillator (CIO). This generates a carrier signal that can be mixed with the incoming SSB signal, thereby enabling the required audio to be recovered in the detector.
Frequency modulation technique is more expensive as it uses complicated demodulator includes tuned circuit.