Question

In: Biology

Construct a conclusion of the overall of how gene therapy if beneficial to X-linked hyper IgM. With citation.

Construct a conclusion of the overall of how gene therapy if beneficial to X-linked hyper IgM. With citation.

Solutions

Expert Solution

Clinical characteristics.

X-linked hyper IgM syndrome (HIGM1), a disorder of abnormal T- and B-cell function, is characterized by low serum concentrations of IgG, IgA, and IgE with normal or elevated serum concentrations of IgM. Mitogen proliferation may be normal, but NK- and T-cell cytotoxicity can be impaired. Antigen-specific responses are usually decreased or absent. Total numbers of B cells are normal but there is a marked reduction of class-switched memory B cells. Defective oxidative burst of both neutrophils and macrophages has been reported. The range of clinical findings varies, even within the same family. More than 50% of males with HIGM1 develop symptoms by age one year, and more than 90% are symptomatic by age four years. HIGM1 usually presents in infancy with recurrent upper- and lower-respiratory tract bacterial infections, opportunistic infections including Pneumocystis jirovecii pneumonia, and recurrent or protracted diarrhea that can be infectious or noninfectious and is associated with failure to thrive. Neutropenia is common; thrombocytopenia and anemia are less commonly seen. Autoimmune and/or inflammatory disorders (such as sclerosing cholangitis) as well as increased risk for neoplasms have been reported as medical complications of this disorder. Significant neurologic complications, often the result of a CNS infection, are seen in 5%-15% of affected males. Liver disease, a serious complication of HIGM1 once observed in more than 80% of affected males by age 20 years, may be decreasing with adequate screening and treatment of Cryptosporidium infection.

Diagnosis/testing.

The diagnosis of X-linked hyper IgM syndrome is established in a male proband with typical clinical and laboratory findings and a hemizygous pathogenic variant in CD40LG identified by molecular genetic testing.

Management.

Treatment of manifestations: Hematopoietic stem cell transplantation (HSCT) (the only curative treatment currently available), ideally performed before age ten years, prior to evidence of organ damage; immunoglobulin replacement therapy (either intravenous or subcutaneous); appropriate antimicrobial therapy for acute infections; antimicrobial prophylaxis for opportunistic infection against Pneumocysitis jirovecii pneumonia; recombinant granulocyte colony-stimulating factor for chronic neutropenia; immunosuppressants for autoimmune disorders.

Agents/circumstances to avoid: Areas that place individual at risk of contracting Cryptosporidium including pools, lakes, ponds, or certain water sources; drinking unpurified or unfiltered water; live vaccines such as rotavirus, MMR, varicella, live attenuated polio, and BCG.

Surveillance: At least annually: CBC with differential to monitor for cytopenias, testing of IgG levels and lymphocyte subpopulations, pulmonary function tests after age seven years. Regular assessment of liver function, consider abdominal imaging; as well as polymerase chain reaction-based testing for the presence of enteric pathogens including Cryptosporidium. Monitor growth and general health with a low threshold for lymph node biopsy, given elevated oncologic risk.

Evaluation of relatives at risk: It is appropriate to clarify the genetic status of newborn at-risk relatives of an affected individual in order to identify as early as possible those who would benefit from early diagnosis and prompt initiation of treatment and prevention of infections.

Genetic counseling.

By definition, X-linked hyper IgM syndrome (HIGM1) is inherited in an X-linked manner. Affected males transmit the pathogenic variant to all their daughters and none of their sons. Women with a CD40LG pathogenic variant have a 50% chance of transmitting the pathogenic variant in each pregnancy. Males who inherit the pathogenic variant will be affected. Female who inherit the pathogenic variant will typically be asymptomatic but may have a range of clinical manifestation depending on X-chromosome inactivation. Once the CD40LG pathogenic variant has been identified in an affected family member, heterozygote testing for at-risk female relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing for HIGM1 are possible.

Literature Cited

  • Abbott JK, Gelfand EW. Common variable immunodeficiency: diagnosis, management, and treatment. Immunol Allergy Clin North Am. 2015;35:637–58. [PubMed]

  • Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, Kawamura N, Toba T, Nonoyama S, Ochs HD, Komiyama A. Absence of IgD-CD27 (+) memory B cell population in X-linked hyper-IgM Syndrome. J Clin Invest. 1998;102:853–60. [PMC free article] [PubMed]

  • Anzilotti C, Swan DJ, Boisson B, Deobagkar-Lele M, Oliveira C, Chabosseau P, Engelhardt KR, Xu X, Chen R, Alvarez L, Berlinguer-Palmini R, Bull KR, Cawthorne E, Cribbs AP, Crockford TL, Dang TS, Fearn A, Fenech EJ, de Jong SJ, Lagerholm BC, Ma CS, Sims D, van den Berg B, Xu Y, Cant AJ, Kleiner G, Leahy TR, de la Morena MT, Puck JM, Shapiro RS, van der Burg M, Chapman JR, Christianson JC, Davies B, McGrath JA, Przyborski S, Santibanez Koref M, Tangye SG, Werner A, Rutter GA, Padilla-Parra S, Casanova JL, Cornall RJ, Conley ME, Hambleton S. An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat Immunol. 2019;20:350–61. [PMC free article] [PubMed]

  • Bucciol G, Nicholas SK, Calvo PL, Cant A, Edgar JDM, Espanol T, Ferrua F, Galicchio M, Gennery AR, Hadzic N, Hanson I E, Kusminsky G, Lange A, Lanternier F, Mahlaoui N, Moshous D, Nademi Z, Neven B, Oleastro M, Porta F, Quarello P, Silva M, Slatter MA, Soncini E, Stefanowicz M, Tandoi F, Teisseyre M, Torgerson TR, Veys P, Weinacht KG, Wolska-Kuśnierz B, Pirenne J, de la Morena MT, Meyts I. Combined liver and hematopoietic stem cell transplantation in patients with X-linked hyper-IgM syndrome. J Allergy Clin Immunol. 2019;143:1952–6.e6. [PubMed]

  • Cabral-Marques O, Klaver S, Schimke LF, Ascendino ÉH, Khan TA, Pereira PV, Falcai A, Vargas-Hernández A, Santos-Argumedo L, Bezrodnik L, Moreira I, Seminario G, Di Giovanni D, Raccio AG, Porras O, Weber CW, Ferreira JF, Tavares FS, de Carvalho E, Valente CF, Kuntze G, Galicchio M, King A, Rosário-Filho NA, Grota MB, dos Santos Vilela MM, Di Gesu RS, Lima S, de Souza Moura L, Talesnik E, Mansour E, Roxo-Junior P, Aldave JC, Goudouris E, Pinto-Mariz F, Berrón-Ruiz L, Staines-Boone T, Calderón WO, del Carmen Zarate-Hernández M, Grumach AS, Sorensen R, Durandy A, Torgerson TR, Carvalho BT, Espinosa-Rosales F, Ochs HD, Condino-Neto A. First report of the Hyper IgM Syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol. 2014;34:146–56. [PubMed]

  • Cabral-Marques O, França TT, Al-Sbiei A, Schimke LF, Khan TA, Feriotti C, da Costa TA, Junior OR, Weber CW, Ferreira JF, Tavares FS, Valente C, Di Gesu RSW, Iqbal A, Riemekasten G, Amarante-Mendes GP, Marzagão Barbuto JA, Costa-Carvalho BT, Pereira PVS, Fernandez-Cabezudo MJ, Calich VLG, Notarangelo LD, Torgerson TR, Al-Ramadi BK, Ochs HD, Condino-Neto A. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-γ. J Allergy Clin Immunol. 2018;142:1571–88.e9. [PMC free article] [PubMed]

  • Chou J, Hanna-Wakim R, Tirosh I, Kane J, Fraulino D, Lee Y N, Ghanem S, Mahfouz I, Megarbane A, Lefranc G, Inati A, Dbaibo G, Giliani S, Notarangelo LD, Geha R S, Massaad MJ. A novel homozygous mutation in recombination activating gene 2 in two relatives with different clinical phenotypes: Omenn syndrome and hyper-IgM syndrome. J Allergy Clin Immunol. 2012;130:1414–6. [PMC free article] [PubMed]

  • Davies EG, Thrasher AJ. Update on the hyper immunoglobulin M syndromes. Br J Haematol. 2010;149:167–80. [PMC free article] [PubMed]

  • de la Morena MT. Clinical phenotypes of hyper IgM syndromes. J Allergy Clin Immunol Pract. 2016;4:1023–36. [PubMed]

  • de la Morena MT, Leonard D, Torgerson TR, Cabral-Marques O, Slatter M, Aghamohammadi A, Chandra S, Murguia-Favela L, Bonilla FA, Kanariou M, Damrongwatanasuk R, Kuo CY, Dvorak CC, Meyts I, Chen K, Kobrynski L, Kapoor N, Richter D, DiGiovanni D, Dhalla F, Farmaki E, Speckmann C, Español T, Shcherbina A, Hanson IC, Litzman J, Routes JM, Wong M, Fuleihan R, Seneviratne SL, Small TN, Janda A, Bezrodnik L, Seger R, Raccio AG, Edgar JD, Chou J, Abbott JK, van Montfrans J, González-Granado LI, Bunin N, Kutukculer N, Gray P, Seminario G, Pasic S, Aquino V, Wysocki C, Abolhassani H, Dorsey M, Cunningham-Rundles C, Knutsen AP, Sleasman J, Costa Carvalho BT, Condino-Neto A, Grunebaum E, Chapel H, Ochs HD, Filipovich A, Cowan M, Gennery A, Cant A, Notarangelo LD, Roifman CM. Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol. 2017;139:1282–92. [PMC free article] [PubMed]

  • de Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F. CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol. 1999;29:367–73. [PubMed]

  • Durandy A, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev. 2005;203:67–79. [PubMed]

  • Erdos M, Garami M, Rákóczi E, Zalatnai A, Steinbach D, Baumann U, Kropshofer G, Tóth B, Maródi L. Neuroendocrine carcinoma associated with X-linked hyper-immunoglobulin M syndrome: report of four cases and review of the literature. Clin Immunol. 2008;129:455–61. [PubMed]

  • Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, Avanzini MA, Marconi M, Badolato R, Ugazio AG, Levy Y, Catalan N, Durandy A, Tbakhi A, Notarangelo LD, Plebani A. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9. [PMC free article] [PubMed]

  • Ferrua F, Galimberti S, Courteille V, Slatter MA, Booth C, Moshous D, Neven B, Blanche S, Cavazzana A, Laberko A, Shcherbina A, Balashov D, Soncini E, Porta F, Al-Mousa H, Al-Saud B, Al-Dhekri H, Arnaout R, Formankova R, Bertrand Y, Lange A, Smart J, Wolska-Kusnierz B, Aquino VM, Dvorak CC, Fasth A, Fouyssac F, Heilmann C, Hoenig M, Schuetz C, Kelečić J, Bredius RGM, Lankester AC, Lindemans CA, Suarez F, Sullivan KE, Albert MH, Kałwak K, Barlogis V, Bhatia M, Bordon V, Czogala W, Alonso L, Dogu F, Gozdzik J, Ikinciogullari A, Kriván G, Ljungman P, Meyts I, Mustillo P, Smith AR, Speckmann C, Sundin M, Keogh SJ, Shaw PJ, Boelens JJ, Schulz AS, Sedlacek P, Veys P, Mahlaoui N, Janda A, Davies EG, Fischer A, Cowan MJ, Gennery AR, et al. Hematopoietic stem cell transplantation for CD40 Ligand deficiency: Results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. J Allergy Clin Immunol. 2019;143:2238–53. [PubMed]

  • Filipovich L, Gross T. Immunodeficiency and cancer. In: Abeloff M, Armitage J, Niederhuber J, Kastan M, McKenna WG, eds. Clinical Oncology. 3 ed. London, UK: Elsevier/Churchill Livingstone; 2004:287-98.

  • Gallerani I, Innocenti DD, Coronella G, Berti S, Amato L, Moretti S, Fabbri P. Cutaneous sarcoid-like granulomas in a patient with X-linked hyper-IgM syndrome. Pediatr Dermatol. 2004;21:39–43. [PubMed]

  • Gilmour KC, Walshe D, Heath S, Monaghan G, Loughlin S, Lester T, Norbury G, Cale CM. Immunological and genetic analysis of 65 patients with a clinical suspicion of X linked hyper-IgM. Mol Pathol. 2003;56:256–62. [PMC free article] [PubMed]

  • Hayward AR, Levy J, Facchetti F, Notarangelo L, Ochs HD, Etzioni A, Bonnefoy JY, Cosyns M, Weinberg A. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158:977–83. [PubMed]

  • Ho HE, Byun M, Cunningham-Rundles C. Disseminated cutaneous warts in X-linked hyper IgM syndrome. J Clin Immunol. 2018;38:454–6. [PMC free article] [PubMed]

  • Hollenbaugh D, Wu LH, Ochs HD, Nonoyama S, Grosmaire LS, Ledbetter JA, Noelle RJ, Hill H, Aruffo A. The Random Inactivation of the X Chromosome Carrying the Defective Gene Responsible for X-linked Hyper IgM Syndrome (X-HIM) in Female Carriers of HIGM1. J Clin Invest. 1994;94:616–22. [PMC free article] [PubMed]

  • Hubbard N, Hagin D, Sommer K, Song Y, Khan I, Clough C, Ochs H D, Rawlings D J, Scharenberg A M, Torgerson TR. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127:2513–22. [PubMed]

  • Imai K, Catalan N, Plebani A, Maródi L, Sanal O, Kumaki S, Nagendran V, Wood P. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class switch recombination. J Clin Invest. 2003;112:136–42. [PMC free article] [PubMed]

  • Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest. 1999;103:1151–8. [PMC free article] [PubMed]

  • Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2:223–8. [PubMed]

  • Kracker S, Di Virgilio M, Schwartzentruber J, Cuenin C, Forveille M, Deau MC, McBride KM, Majewski J, Gazumyan A, Seneviratne S, Grimbacher B, Kutukculer N, Herceg Z, Cavazzana M, Jabado N, Nussenzweig MC, Fischer A, Durandy A. An Inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 Chromatin Remodeling Complex. J Allergy Clin Immunol. 2015;2015;135:998–1007.e6. [PMC free article] [PubMed]

  • Kuo C Y, Long J D, Campo-Fernandex B, de Oliveira S, Cooper AR, Romero Z, Hoban MD, Joglekar AV, Lill GR, Kaufman ML, Fitz-Gibbon S, Wang X, Hollis RP, Kohn DB. Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep. 2018;23:2606–16. [PMC free article] [PubMed]

  • Le Coz C, Trofa M, Syrett CM, Martin A, Jyonouchi H, Jyonouchi S, Anguera MC, Romberg N. CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation. J Allergy Clin Immunol. 2018;141:2308–11.e7. [PMC free article] [PubMed]

  • Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105:1881–90. [PubMed]

  • Leven EA, Maffucci P, Ochs H, Scholl PR, Buckley RB, Fuleihan RL, Geha RS, Cunningham CK, Bonilla FA, Conley ME, Ferdman RM, Hernandez-Trujilo V, Puck JM, Sullivan K, Secord EA, Ramesh M, Cunningham-Rundles C. Hyper IgM syndrome: a report from the USIDNET Registry. J Clin Immunol. 2016;36:490–501. [PMC free article] [PubMed]

  • Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigioni P, Resnick I, Fasth A, Baer M, Gomez L, Sanders EAM, Tabone MD, Plantaz D, Etzioni A, Monafo V, Abinun M, Hammarstrom L, Abrahamsen T, Jones A, Finn A, Klemola T, DeVries E, Sanal O, Peitsch MC, Notarangelo LD. Clinical spectrum of X-linked hyper IgM syndrome. J Pediatr. 1997;131:47–54. [PubMed]

  • Lobo FM, Scholl PR, Fuleihan RL. CD40 ligand-deficient T cells from X-linked hyper-IgM syndrome carriers have intrinsic priming capability. J Immunol. 2002;168:1473–8. [PubMed]

  • Lougaris V, Lanzi G, Manuela B, Gazzurelli L, Vairo D, Lorenzini T, Badolato R, Notarangelo LD, Boschi A, Moratto D, Plebani A. Progressive severe B cell and NK cell deficiency with T cell senescence in adult CD40L deficiency. Clin Immunol. 2018;190:11–14. [PubMed]

  • Minegishi Y, Lavoie A, Cunningham-Rundles C, Bedard PM, Hebert J, Cote L, Dan K, Sedlak D, Buckley RH, Fischer A, Durandy A, Conley ME. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol. 2000;97:203–10. [PubMed]

  • Nicolaides RE, de la Morena MT. Inherited and acquired clinical phenotypes associated with neuroendocrine tumors. Curr Opin Allergy Clin Immunol. 2017;17:431–42. [PubMed]

  • Nonoyama S, Penix LA, Edwards CP, Lewis DB, Ito S, Aruffo A, Wilson CB, Ochs HD. Diminished Expression of CD40 ligand by activated neonatal T cells. J Clin Invest. 1995;95:66–75. [PMC free article] [PubMed]

  • Notarangelo LD, Hayward AR. X-linked immunodeficiency with hyper-IgM (XHIM). Clin Exp Immunol. 2000;120:399–405. [PMC free article] [PubMed]

  • Park JH, Resnick ES, Cunningham-Rundles C. Perspectives on common variable immune deficiency. Ann N Y Acad Sci. 2011;1246:41–9. [PMC free article] [PubMed]

  • Prasad ML, Velickovic M, Weston SA, Benson EM. Mutational screening of the CD40 ligand (CD40L) gene in patients with X linked hyper-IgM syndrome (XHIM) and determination of carrier status in female relatives. J Clin Pathol. 2005;58:90–2. [PMC free article] [PubMed]

  • Rawat A, Mathew B, Pandiarajan V, Jindal A, Sharma M, Suri D, Gupta A, Goel S, Karim A, Saikia B, Minz RW, Imai K, Nonoyama S, Ahara O, Giliani SC, Notarangelo LD, Chan KW, Lau YL, Singh S. Clinical and molecular features of X-linked hyper IgM syndrome - an experience from North India. Clin Immunol. 2018;195:59–66. [PMC free article] [PubMed]

  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–75. [PubMed]

  • Schuster A, Apfelstedt-Sylla E, Pusch CM, Zrenner E, Thirkill CE. Autoimmune retinopathy with RPE hypersensitivity and "negative ERG" in X-linked hyper-IgM syndrome. Ocul Immunol Inflamm. 2005;13:235–43. [PubMed]

  • Seyama K, Nonoyama S, Gangsaas I, Hollenbaugh D, Pabst HF, Aruffo A, Ochs HD. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood. 1998;92:2421–34. [PubMed]

  • Tafakori Delbari M, Cheraghi T, Yazdani R, Fekrvand S, Delavari S, Azizi G, Chavoshzadeh Z, Mahdaviani SA, Ahanchian H, Khoshkhui M, Behmanesh F, Aleyasin S, Esmaeilzadeh H, Jabbari-Azad F, Fallahpour M, Zamani M, Madani SP, Moazzami B, Habibi S, Rezaei A, Lotfalikhani A, Movahed M, Shariat M, Kalantari A, Babaei D, Darabi M, Parvaneh N, Rezaei N, Abolhassani H, Aghamohammadi A. Clinical manifestations, immunological characteristics and genetic analysis of patients with hyper-immunoglobulin M syndrome in Iran. Int Arch Allergy Immunol. 2019;180:52–63. [PubMed]

  • Wang LL, Zhou W, Zhao W, Tian Z, Wang W, Wang X, Chen T. Clinical features and genetic analysis of 20 Chinese patients with X-linked hyper-IgM syndrome. J Immunol Res. 2014;2014:683160 [PMC free article] [PubMed]

  • Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, Stiehm ER, Conley ME. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82:373–84. [PubMed]

  • Yong PF, Thaventhiran JE, Grimbacher B. "A rose is a rose is a rose," but CVID is not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol. 2011;111:47–107. [PubMed]


Related Solutions

Construct a conclusion of the overall of how gene therapy if beneficial to X-linked hyper IgM.
Construct a conclusion of the overall of how gene therapy if beneficial to X-linked hyper IgM.
Genetics: How does gene therapy work? What are the challenges of gene therapy? Identify a disease...
Genetics: How does gene therapy work? What are the challenges of gene therapy? Identify a disease state that could be treated with gene therapy. There are several ethical issues surrounding gene therapy. Pick one and state whether you agree or disagree with the position. Explain your answer. There are both highs and lows in gene therapy. Research the stories of Ashanti de Silva and Jesse Gelsinger. Based on the outcomes of these treatments, do you think experimental gene therapy trials...
Question 15 - Cystic fibrosis is transmitted as a(n): X-linked recessive gene autosomal recessive gene autosomal...
Question 15 - Cystic fibrosis is transmitted as a(n): X-linked recessive gene autosomal recessive gene autosomal dominant gene chromosomal defect
A woman who is a heterozygous carrier of an X-linked recessive disease gene mates with a...
A woman who is a heterozygous carrier of an X-linked recessive disease gene mates with a phenotypically normal male. They have six sons and four daughters. This disease gene has a penetrance of 80%. How many children will be affected by this disease?
In Drosophila, the yellow (y) and the white (w) gene are both X-linked and recessive and...
In Drosophila, the yellow (y) and the white (w) gene are both X-linked and recessive and 1 m.u. apart. You cross a true breeding yellow female with wildtype red eyes with a male with wildtype body color and white eyes. You obtain all wildtype females in the F1. You testcross an F1 female with a yellow bodied male with white eyes. What is the expected proportion of the testcross males that are yellow with white eyes? Please explain your answer.
Cat coat color is controlled by an X-linked gene with two alleles: XB= Black and XO...
Cat coat color is controlled by an X-linked gene with two alleles: XB= Black and XO = Orange. A population of cats in Tampa was found to consist of the following phenotypes: Black Orange Calico Totals Males 311 42 0 353 Females 277 7 54 338 Calculate the allelic frequency using all of the available information.
In fruit flies, bristle shape is controlled by an X-linked gene. The dominant wild-type allele (+)...
In fruit flies, bristle shape is controlled by an X-linked gene. The dominant wild-type allele (+) results in normal bristles, while the recessive allele (sn) results in short 'singed' bristles. A normal-bristled female offspring of a male with singed bristles is crossed with a normal-bristled male. If we consider only the progeny that have normal bristles, what is the ratio of females : males among these? 2:3 1:3 3:1 1:1 2:1 3:2 1:2
Gene therapy – How is CRISPR cas9 used to change faulty genes? (basic description of the...
Gene therapy – How is CRISPR cas9 used to change faulty genes? (basic description of the process is fine). Describe how changing a gene could be used to disrupt HIV (remember the immune cell membrane example from early in the term) and to help immune cells fight cancer. What are some ethical considerations for editing genes in humans?
Genetics: How can “good” and “bad” uses of gene therapy be distinguished? Who decides which traits...
Genetics: How can “good” and “bad” uses of gene therapy be distinguished? Who decides which traits are normal and which constitute a disability or disorder? Will the high costs of gene therapy make it available only to the wealthy? Could the widespread use of gene therapy make society less accepting of people who are different?
1.How are DNA microarrays used to diagnose disease? 2.How does gene therapy work? 3.What things have...
1.How are DNA microarrays used to diagnose disease? 2.How does gene therapy work? 3.What things have held back more extensive use of gene therapy (why doesn’t everyone with a genetic disease get treated with gene therapy? 3. What is an STR and what is useful for?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT