In: Statistics and Probability
a)
Level of Significance , α = 0.01
Sample #1 ----> 1
mean of sample 1, x̅1= 170.000
standard deviation of sample 1, s1 =
10.0000
size of sample 1, n1= 36
Sample #2 ----> 2
mean of sample 2, x̅2= 150.000
standard deviation of sample 2, s2 =
5.0000
size of sample 2, n2= 42
Degree of freedom, DF= n1+n2-2 =
76
t-critical value = t α/2 =
2.6421 (excel formula =t.inv(α/2,df)
pooled std dev , Sp= √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) = 7.7162
std error , SE = Sp*√(1/n1+1/n2) =
1.7526
margin of error, E = t*SE = 2.6421
* 1.75 = 4.63
difference of means = x̅1-x̅2 =
170.0000 - 150.000
= 20.0000
confidence interval is
Interval Lower Limit= (x̅1-x̅2) - E =
20.0000 - 4.6304 =
15.3696
Interval Upper Limit= (x̅1-x̅2) + E =
20.0000 + 4.6304 =
24.6304
b)
Ho : µ1 - µ2 = 0
Ha : µ1-µ2 > 0
Level of Significance , α = 0.10
Sample #1 ----> 1
mean of sample 1, x̅1= 170.000
standard deviation of sample 1, s1 =
10.0000
size of sample 1, n1= 36
Sample #2 ----> 2
mean of sample 2, x̅2= 150.000
standard deviation of sample 2, s2 =
5.0000
size of sample 2, n2= 42
difference in sample means = x̅1-x̅2 =
170.0000 - 150.0 =
20.00
pooled std dev , Sp= √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) = 7.7162
std error , SE = Sp*√(1/n1+1/n2) =
1.7526
t-statistic = ((x̅1-x̅2)-µd)/SE = ( 20.0000
- 0 ) / 1.75
= 11.412
Degree of freedom, DF= n1+n2-2 =
76
p-value = 0.0000 [excel
function: =T.DIST.RT(t stat,df) ]
Conclusion: p-value <α , Reject null
hypothesis
group B has lower spending level than Group A