Question

In: Anatomy and Physiology

Match the stage in the action potential with its voltage Na+ influx K+ outflux Na+ channels...

Match the stage in the action potential with its voltage

Na+ influx

K+ outflux

Na+ channels close

Na+/K+ ATPase pump

Rest Potential

A.-85 mV

B.-90 mv to -85 mV

C.-55 mv to +30 mV

D.+30 mV to -90 mV

E.+30 mV

Solutions

Expert Solution


Related Solutions

What would happen to an Action Potential if voltage-gated K+ channels were blocked? A. the Action...
What would happen to an Action Potential if voltage-gated K+ channels were blocked? A. the Action Potential could not occur B. the Action Potential would not repolarize C. the height of the action potential would be reduced D. the undershoot (after-hyperpolarization) would not occur
Describe the importance of voltage-gated channels in the conduction of an action potential.
Describe the importance of voltage-gated channels in the conduction of an action potential.
The voltage-gated Na+ channels are ---------; Single-gated Double-gated Open upon Acetylcholine binding Allow fast influx of...
The voltage-gated Na+ channels are ---------; Single-gated Double-gated Open upon Acetylcholine binding Allow fast influx of Na+ ions All of the above Only #2 and #4 Only #2, #3 and #4
Define an action potential. How are the Na+, K+, and Ca+ ions involved in an action...
Define an action potential. How are the Na+, K+, and Ca+ ions involved in an action potential? How does the myelin speed up its transmission? Define a neurotransmitter. Where are they stored and how do they relay an action potential message from one cell to the next? Define threshold. How do neurotransmitters bring target cells toward or away from threshold. What happens to the response of the target cell if threshold is not reached? What happens if threshold is reached?...
An action potential is a. a reversal of the Na+ and K+ concentrations inside and outside...
An action potential is a. a reversal of the Na+ and K+ concentrations inside and outside the neuron. b. the same size and shape at the beginning and the end of the axon. c. initiated by inhibitory post synaptic graded potentials. d. transmitted to the distal end of a neuron and cause release of neurotransmitter. e. Both b and d are correct 2. Axonal transport refers to: a. the release of neurotransmitter molecules into the synaptic cleft. b. the use...
1. What would happen if there were a blockage to voltage-gated Na+ channels during an action...
1. What would happen if there were a blockage to voltage-gated Na+ channels during an action potential? 2. What would occur to an action potential if there was delayed inactivation of voltage-gated Na+ channels? 3. What would happen to an action potential when a toxin prevents ACh binding to nAChRs on muscle fibres? 4. What would happen to an action potential if a toxin which forms pores in the cell membrane of neurons, allowing the influx of Ca2+ into the...
QUESTION 1 What letter corresponds to the phase in which voltage-gated Na+ channels are open? action...
QUESTION 1 What letter corresponds to the phase in which voltage-gated Na+ channels are open? action potential.pdf A. B. C. D. E. QUESTION 2 Which of the following statements is true about the mRNA whose structure is depicted in the diagram shown below? mRNA schematic.pdf A.This could be a primary transcript from a prokaryote. B. This could be a primary transcript from a eukaryote but not a prokaryote. C. This could be a mature mRNA from a eukaryote but not...
1. During an Action potential, Na+ enters the cell and causes the membrane voltage to become...
1. During an Action potential, Na+ enters the cell and causes the membrane voltage to become less negative. This process is called______________. 2. During Resting Membrane Potential of a cell, Na+ is more concentrated __________ whereas K+ is more concentrated ____________. 3. At the beginning of Repolarization, ______ channels close and ______ channels open. 4. What is the name of the muscle fiber organelle that is continuous with the sarcolemma and transmits an action potential through the inside of a...
In a step by step manner, explain how the voltage regulated channels produce an action potential.
In a step by step manner, explain how the voltage regulated channels produce an action potential.
Describe the relationship between voltage-gated ion channels and the steps of generating an action potential.
Describe the relationship between voltage-gated ion channels and the steps of generating an action potential.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT